Skip to main content

Advertisement

Log in

Explore Regional PM2.5 Features and Compositions Causing Health Effects in Taiwan

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Chemical compositions of atmospheric fine particles like PM2.5 prove harmful to human health, particularly to cardiopulmonary functions. Multifaceted health effects of PM2.5 have raised broader, stronger concerns in recent years, calling for comprehensive environmental health-risk assessments to offer new insights into air-pollution control. However, there have been few studies adopting local air-quality-monitoring datasets or local coefficients related to PM2.5 health-risk assessment. This study aims to assess health effects caused by PM2.5 concentrations and metal toxicity using epidemiological and toxicological methods based on long-term (2007–2017) hourly monitoring datasets of PM2.5 concentrations in four cities of Taiwan. The results indicated that (1) PM2.5 concentrations and hazardous substances varied substantially from region to region, (2) PM2.5 concentrations significantly decreased after 2013, which benefited mainly from two actions against air pollution, i.e., implementing air-pollution-control strategies and raising air-quality standards for certain emission sources, and (3) under the condition of low PM2.5 concentrations, high health risks occurred in eastern Taiwan on account of toxic substances adsorbed on PM2.5 surface. It appears that under the condition of low PM2.5 concentrations, the results of epidemiological and toxicological health-risk assessments may not agree with each other. This raises a warning that air-pollution control needs to consider toxic substances adsorbed in PM2.5 and region-oriented control strategies are desirable. We hope that our findings and the proposed transferable methodology can call on domestic and foreign authorities to review current air-pollution-control policies with an outlook on the toxicity of PM2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated in this study are available from the corresponding author on reasonable request.

References

  • Adami HO, Berry SCL, Breckenridge CB, Smith LL, Swenberg JA, Trichopoulos D, Pastoor TP (2011) Toxicology and epidemiology: improving the science with a framework for combining toxicological and epidemiological evidence to establish causal inference. J Toxicol Sci 122(2):223–234

    Article  CAS  Google Scholar 

  • Atkinson RW, Cohen A, Mehta S, Anderson HR (2012) Systematic review and meta-analysis of epidemiological time-series studies on outdoor air pollution and health in Asia. Air Qual Atmos Health 5(4):383–391

    Article  CAS  Google Scholar 

  • ATSDR, Agency for toxic substances and disease registry. US Public Health Service, USA. https://www.atsdr.cdc.gov/

  • Aunan K, Ma Q, Lund MT, Wang S (2018) Population-weighted exposure to PM2. 5 pollution in China: an integrated approach. Environ Int 120:111–120

    Article  CAS  Google Scholar 

  • Barnes DG, Dourson M, Preuss P, Bellin J, Derosa C, Engler R, Ghali G (1988) Reference dose (RfD): description and use in health risk assessments. Regul Toxicol Pharmacol 8(4):471–486

    Article  CAS  Google Scholar 

  • Betha R, Pradani M, Lestari P, Joshi UM, Reid JS, Balasubramanian R (2013) Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos Res 122:571–578

    Article  CAS  Google Scholar 

  • Bi C, Chen Y, Zhao Z, Li Q, Zhou Q, Ye Z, Ge X (2020) Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2. 5 during fall and winter in an industrial area. Chemosphere 238:124620

    Article  CAS  Google Scholar 

  • Błaszczyk E, Rogula-Kozłowska W, Klejnowski K, Kubiesa P, Fulara I, Mielżyńska-Švach D (2017) Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland. Air Qual Atmos Health 10(10):1207–1220

    Article  CAS  Google Scholar 

  • Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Van Donkelaar A (2012) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46(2):652–660

    Article  CAS  Google Scholar 

  • Brunekreef B, Forsberg B (2005) Epidemiological evidence of effects of coarse airborne particles on health. Eur Respir J 26(2):309–318

    Article  CAS  Google Scholar 

  • CalEPA—California Environmental Protection Agency, USA. https://oehha.ca.gov/

  • Chalvatzaki E, Chatoutsidou SE, Lehtomäki H, Almeida SM, Eleftheriadis K, Hänninen O, Lazaridis M (2019) Characterization of human health risks from particulate air pollution in selected European. Cities Atmos 10(2):96

    CAS  Google Scholar 

  • Chan CC, Ng HC (2011) A case-crossover analysis of Asian dust storms and mortality in the downwind areas using 14-year data in Taipei. Sci Total Environ 410:47–52

    Article  CAS  Google Scholar 

  • Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C (2016) Beyond PM2. 5: the role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta 1860(12):2844–2855

    Article  CAS  Google Scholar 

  • Environmental Protection Bureau of Yilan County Government (2015) Yilan County fine suspended particulate air quality test and cause analysis project. http://ws.e-land.gov.tw/Download.ashx?u=LzAwMS8yMDE1eWlsYW4vMjUzL1JlbEZpbGUvOTYwMy8xMDczMzQvMjAxNTExMTYwNDM4NTAucGRm&n=MTA05bm05bqm6Ieq6KGM56CU56m26KiI55WrLVYyLnBkZg%3D%3D&icon=..pdf

  • Eregno FE, Tryland I, Tjomsland T, Myrmel M, Robertson L, Heistad A (2016) Quantitative microbial risk assessment combined with hydrodynamic modelling to estimate the public health risk associated with bathing after rainfall events. Sci Total Environ 548:270–279

    Article  CAS  Google Scholar 

  • Fan J, Li S, Fan C, Bai Z, Yang K (2016) The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res Int 23(1):843–850

    Article  CAS  Google Scholar 

  • Fantke P, Jolliet O, Evans JS, Apte JS, Cohen AJ, Hänninen OO, Loh MM (2015) Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop. Int J LIfe Cycle Assess 20(2):276–288

    Article  CAS  Google Scholar 

  • Faraji M, Pourpak Z, Naddafi K, Nodehi RN, Nicknam MH, Shamsipour M, Mesdaghinia A (2018) Effects of airborne particulate matter (PM10) from dust storm and thermal inversion on global DNA methylation in human peripheral blood mononuclear cells (PBMCs) in vitro. Atmos Environ 195:170–178

    Article  CAS  Google Scholar 

  • Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, Cohen AJ (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1659–1724

    Article  Google Scholar 

  • Gao Y, Ji H (2018) Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2. 5 and PM10: one-year measurement in a densely populated area of urban Beijing. Atmos Res 212:213–226

    Article  CAS  Google Scholar 

  • Gorai AK, Tchounwou PB, Biswal SS, Tuluri F (2018) Spatio-temporal variation of particulate matter (PM2.5) concentrations and its health impacts in a Mega city, Delhi in India. Environ Health Insights 12:1178630218792861

    Article  Google Scholar 

  • HEI—Health Effects Institute (2010) Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects (No. 17). Health Effects Institute. Panel on the health effects of traffic-related air pollution

  • Hime NJ, Marks GB, Cowie CT (2018) A comparison of the health effects of ambient particulate matter air pollution from five emission sources. Int J Environ Res Public Health 15(6):1206

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing, China. Atmos Environ 57:146–PM152

    Article  CAS  Google Scholar 

  • Huang JY (2001) Analysis of composition of TSP, PM10 and PM2.5 particles in fixed source flue emissions. Master thesis. https://hdl.handle.net/11296/a58p79

  • Huang YL (2005) Establishing an exposure factor database for air pollution exposure and risk assessment studies. The National Science Committee of the Executive Yuan, Special Research Project, NSC

  • Hwang SL, Lin YC, Guo SE, Chou CT, Lin CM, Chi MC (2017) Fine particulate matter on hospital admissions for acute exacerbation of chronic obstructive pulmonary disease in southwestern Taiwan during 2006–2012. Int J Environ Health Res 27(2):95–105

    Article  CAS  Google Scholar 

  • IARC (2013) Outdoor air pollution a leading environmental cause of cancer deaths. World Health Organization, International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • IRIS—Integrated Risk Information System. US Environmental Protection Agency. https://iris.epa.gov/AtoZ/?list_type=alpha

  • Janssen NAH, Fischer P, Marra M, Ameling C, Cassee FR (2013) Short-term effects of PM2. 5, PM10 and PM2. 5–10 on daily mortality in the Netherlands. Sci Total Environ 463:20–26

    Article  CAS  Google Scholar 

  • Jerrett M, Burnett RT et al. (2005) “Spatial analysis of air pollution and mortality in Los Angeles”. Epidemiology 16(6):727–736

    Article  Google Scholar 

  • Jia YY, Wang Q, Liu T (2017) Toxicity research of PM2. 5 compositions in vitro. Int J Environ Res Public Health 14(3):232

    Article  CAS  Google Scholar 

  • Jiang P, Yang J, Huang C, Liu H (2018) The contribution of socioeconomic factors to PM2. 5 pollution in urban China. Environ Pollut 233:977–985

    Article  CAS  Google Scholar 

  • Jin Q, Fang X, Wen B, Shan A (2017) Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014. Chemosphere 183:429–436

    Article  CAS  Google Scholar 

  • Kan H, London SJ et al. (2007) “Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China”. Environ Int 33(3):376–384

    Article  Google Scholar 

  • Karambelas A, Holloway T, Kinney PL, Fiore AM, DeFries R, Kiesewetter G, Heyes C (2018) Urban versus rural health impacts attributable to PM2.5 and O3 in northern India. Environ Res Lett 13(6):064010

    Article  CAS  Google Scholar 

  • Kim KH, Kabir E, Kabir S (2015a) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143

    Article  CAS  Google Scholar 

  • Kim SY, Sheppard L, Larson TV, Kaufman JD, Vedal S (2015b) Combining PM2.5 component data from multiple sources: data consistency and characteristics relevant to epidemiological analyses of predicted long-term exposures. Environ Health Perspect 123(7):651–658

    Article  CAS  Google Scholar 

  • Krishna RK, Ghude SD, Kumar R, Beig G, Kulkarni R, Nivdange S, Chate D (2019) Surface PM2. 5 estimate using satellite-derived aerosol optical depth over India. Aerosol Air Qual Res 19(1):25–37

    Article  CAS  Google Scholar 

  • Krzyżanowski M, Kuna-Dibbert B, Schneider J (eds) (2005) Health effects of transport-related air pollution. WHO Regional Office, Europe

  • Lee CT (2018) The 2018 project of chemical speciation monitoring and analysis of fine particulate matter (PM2.5). The National Science Committee of the Executive Yuan, Special Research Project, NSC

  • Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525(7569):367

    Article  CAS  Google Scholar 

  • Li PH, Yu J, Bi CL, Yue JJ, Li QQ, Wang L, Liu J, Xiao Z, Guo L, Huang BJ(2019) Health risk assessment for highway toll station workers exposed to PM2.5-bound heavy metals. Atmos Pollut Res 10(4):1024–1030

    Article  CAS  Google Scholar 

  • Li T, Zhang Y, Wang J, Xu D, Yin Z, Chen H, Kinney PL (2018) All-cause mortality risk associated with long-term exposure to ambient PM2.5 in China: a cohort study. Lancet Public Health 3(10):e470–e477

    Article  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853. https://doi.org/10.1016/j.scitotenv.2013.08.090

    Article  CAS  Google Scholar 

  • Li Z, Wen Q, Zhang R (2017) Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): a review. Sci Total Environ 586:610–622

    Article  CAS  Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Aryee M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  Google Scholar 

  • Liou SH (2014) Epidemiological investigation of fine suspended particles (PM2.5). Environmental Protection Agency Report. NSC102-EPA-F-003-001. https://www.epa.gov.tw/DisplayFile.aspx?FileID=4D80E83B65D18EDC&P=b6f9cd19-3224-44bd-ab1e-854bc5519cbb

  • Liu J, Chen Y, Chao S, Cao H, Zhang A, Yang Y (2018) Emission control priority of PM2. 5-bound heavy metals in different seasons: A comprehensive analysis from health risk perspective. Sci Total Environ 644:20–30

    Article  CAS  Google Scholar 

  • Liu X, Zhai Y, Zhu Y, Liu Y, Chen H, Li P, Zeng G (2015) Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Sci Total Environ 517:215–221

    Article  CAS  Google Scholar 

  • Liu Y, Wu J, Yu D, Hao R (2018) Understanding the patterns and drivers of air pollution on multiple time scales: the case of northern China. Environ Manag 61(6):1048–1061

    Article  Google Scholar 

  • Lo WC, Shue RH, Chan CC, Lin HH (2016) The attributable mortality burden due to PM2.5 exposure in Taiwan. Formos J Med, 20(4):396–405

    Google Scholar 

  • Lu YH (2009) Simulation and analysis of the particle and heavy metal pollution in atmosphere. Master thesis. https://hdl.handle.net/11296/ev9468

  • Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, Zheng X (2015) Systematic review and meta-analysis of the adverse health effects of ambient PM2. 5 and PM10 pollution in the Chinese population. Environ Res 136:196–204

    Article  CAS  Google Scholar 

  • Lu X, Lin C, Li Y, Yao T, Fung JC, Lau AK (2017) Assessment of health burden caused by particulate matter in southern China using high-resolution satellite observation. Environ Int 98:160–170

    Article  CAS  Google Scholar 

  • McDonnell WF, Nishino-Ishikawa N et al. (2000) “Relationships of mortality with the fineand coarse fractions of long-term ambient PM10 concentrations in nonsmokers”. J Expo Anal Environ Epidemiol 10(5):427–436

    Article  CAS  Google Scholar 

  • Ministry of Health and Welfare (MOHW) (2008) Compilation of exposure factors. http://tci.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclret&s=id=%22RF10001254340%22.&searchmode=basic&tcihsspage=tcisearch_opt2_search

  • Park EJ, Kim DS, Park K (2008) Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environ Monit Assess 137(1-3):441–449

    Article  CAS  Google Scholar 

  • Pearce JL, Beringer J, Nicholls N, Hyndman RJ, Tapper NJ (2011) Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos Environ 45(6):1328–1336

    Article  CAS  Google Scholar 

  • Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9):1132–1141

    Article  CAS  Google Scholar 

  • Ritz B, Liew Z, Yan Q, Cui X, Virk J, Ketzel M, Raaschou-Nielsen O (2018) Air pollution and autism in Denmark. Environ Epidemiol 2(4):e028. https://doi.org/10.1097/EE9.0000000000000028

    Article  Google Scholar 

  • Ross MA (2009) Integrated science assessment for particulate matter. US Environmental Protection Agency, Washington DC, USA, p 61–161

    Google Scholar 

  • Schlesinger RB (2007) The health impact of common inorganic components of fine particulate matter (PM2.5) in ambient air: a critical review. Inhal Toxicol 19(10):811–832

    Article  CAS  Google Scholar 

  • Sclar S, Saikawa E (2019) Household air pollution in a changing tibet: a mixed methods ethnography and indoor air quality measurements. Environ Manag 64(3):353–365

    Article  Google Scholar 

  • Shah AS, Langrish JP, Nair H, Mcallister DA, Hunter AL, Donaldson K et al. (2013) Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382(9897):1039–1048

  • Song L, Song H, Lin J, Wang C, Yu M, Huang X, Du L (2017) PM2.5 emissions from different types of heavy-duty truck: a case study and meta-analysis of the Beijing-Tianjin-Hebei region. Environ Sci Pollut Res 24(12):11206–11214

    Article  CAS  Google Scholar 

  • Tai AP, Mickley LJ, Jacob DJ (2010) Correlations between fine particulate matter (PM2. 5) and meteorological variables in the United States: Implications for the sensitivity of PM2. 5 to climate change. Atmos Environ 44(32):3976–3984

    Article  CAS  Google Scholar 

  • Tseng KS (2006) Characterization of the compositions of coarse and fine atmospheric particulates collected in the Pingtung urban area. Master thesis. https://hdl.handle.net/11296/2ny28r

  • TW EPA (2020) Air quality protection policy planning. https://air.epa.gov.tw/EnvTopics/AirQuality_1.aspx

  • TW EPA (2011) Guideline for health risk assessment. https://www.epa.gov.tw/cpDownloadCtl.asp?id=6146

  • TW EPA (2012) The annual report of air pollution control in Taiwan (R.O.C.) in 2012. https://air.epa.gov.tw/EnvDownload/AirQuality/92%E5%B9%B4%E8%87%B3105%E5%B9%B4%E7%A9%BA%E6%B0%A3%E6%B1%A1%E6%9F%93%E9%98%B2%E5%88%B6%E7%B8%BD%E6%AA%A2%E8%A8%8E/101%E5%B9%B4%E7%A9%BA%E6%B0%A3%E6%B1%A1%E6%9F%93%E9%98%B2%E5%88%B6%E7%B8%BD%E6%AA%A2%E8%A8%8E.pdf

  • TW EPA (2013) The annual report of air pollution control in Taiwan (R.O.C.) in 2013. https://air.epa.gov.tw/EnvTopics/AirQuality_8.aspx

  • TW EPA. Air quality protection policy planning. https://air.epa.gov.tw/EnvTopics/AirQuality_1.aspx

  • TW EPA. Laws and regulation database. https://law.moj.gov.tw/LawClass/LawHistory.aspx?pcode=O0020007

  • TW EPA. Stationary pollution source air pollutant emissions standards. https://oaout.epa.gov.tw/laW/EngLawContent.aspx?lan=E&id=81

  • TW EPA. Taiwan air quality monitoring network. http://taqm.epa.gov.tw/taqm/en/YearlyDataDownload.aspx

  • TW EPA. Vehicular air pollutant emission standards. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020003

  • US Environmental Protection Agency. Health effects assessment summary tables (HEAST), US Environmental Protection Agency. https://www.epa.gov/

  • US EPA (1995) Guidance for risk characterization at the U.S. Environmental Protection Agency. U.S. Environmental Protection Agency, Science Policy Council, Washington, DC. https://www.epa.gov/sites/production/files/2014-11/documents/guidelines_exp_assessment.pdf

  • US Environmental Protection Agency Provisional peer reviewed toxicity values for superfund. https://hhpprtv.ornl.gov/

  • US EPA (2013) Draft technical guidance for assessing environmental justice in regulatory analysis 2013b. Washington, D.C. http://yosemite.epa.gov/sab/sabproduct.nsf/0/0F7D1A0D7D15001B8525783000673AC3/$File/EPA-HQOA-2013-0320-0002[1].pdf

  • US EPA (2001) Risk characterization handbook. https://www.epa.gov/risk/risk-characterization-handbook

  • US EPA (2014) Framework for human health risk assessment to inform decision making

  • Vedal S, Kim SY, Miller KA, Fox JR, Bergen S, Gould T (2013) NPACT epidemiologic study of components of fine particulate matter and cardiovascular disease in the MESA and WHI-OS cohorts. National particle component toxicity (NPACT) initiative report on cardiovascular effects. Research report, 178

  • Wang CK (2000) The study of atmospheric aerosols in Taiwan—the characteristics and sources of particles in Kao-hsiung and Taipei areas. Master thesis. https://hdl.handle.net/11296/re792a

  • Wang F, Zhou Y, Meng D, Han M, Jia C (2018) Heavy metal characteristics and health risk assessment of PM2.5 in three residential homes during winter in Nanjing. China Build Environ 143:339–348

    Article  Google Scholar 

  • Wang J, Wang S, Voorhees AS, Zhao B, Jang C, Jiang J, Hao J (2015) Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China. Atmos Environ 123:440–448

    Article  CAS  Google Scholar 

  • Wang SL (2011) Chemical and toxicological characterization of airborne fine particulates (Pm2.5) as a risk factor associated with lung cancers in Taiwan. Ministry of Science and Technology report: NSC100-3112-B400-005

  • Wang Y, Komonpipat S (2020) Revisiting the environmental Kuznets curve of PM2.5 concentration: evidence from prefecture-level and above cities of China. Environ Sci Pollut Res 1–13. https://doi.org/10.1007/s11356-020-07621-x

  • Wei X, Gao B, Wang P, Zhou H, Lu J (2015) Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol Environ Saf 112:186–192

    Article  CAS  Google Scholar 

  • Weng MJ (2014) Chemical composition and source apportionment of ambient fine particulates in Taichung and Pingtung area. Master thesis. http://hdl.handle.net/11455/91681

  • Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B (2011) Traffic-related air toxics and term low birth weight in Los Angeles County, California. Environ Health Perspect 120(1):132–138

    Article  CAS  Google Scholar 

  • Wu CA (2013) Field monitoring, chemical analysis, and control strategies of fine particles (PM2.5) in the Atmosphere of Kaohsiung City

  • Wu CF, Wu SY, Wu YH, Cullen AC, Larson TV, Williamson J, Liu LJS (2009) Cancer risk assessment of selected hazardous air pollutants in Seattle. Environ Int 35(3):516–522

    Article  CAS  Google Scholar 

  • Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2. 5 on the human respiratory system. J Thorac Dis 8(1):E69

    Google Scholar 

  • Xu G, Jiao L, Zhang B, Zhao S, Yuan M, Gu Y, Tang X (2017) Spatial and temporal variability of the PM2. 5/PM10 ratio in Wuhan, Central China. Aerosol Air Qual Res 17:741–751

    Article  CAS  Google Scholar 

  • Xue X, Chen J, Sun B, Zhou B, Li X (2018) Temporal trends in respiratory mortality and short-term effects of air pollutants in Shenyang. China Environ Sci Pollut Res Int 25(12):11468–11479

    Article  CAS  Google Scholar 

  • Yan D, Lei Y, Shi Y, Zhu Q, Li L, Zhang Z (2018) Evolution of the spatiotemporal pattern of PM2.5 concentrations in China—a case study from the Beijing-Tianjin-Hebei region. Atmos Environ 183:225–233

    Article  CAS  Google Scholar 

  • Yang B, Guo J, Xiao C (2018) Effect of PM2.5 environmental pollution on rat lung. Environ Sci Pollut Res 25(36):36136–36146

    Article  CAS  Google Scholar 

  • Yang J, Seo JH, Jeong NN, Sohn JR (2019a) Effects of legal regulation on indoor air quality in facilities for sensitive populations—a field study in Seoul, Korea. Environ Manag 64(3):344–352

    Article  Google Scholar 

  • Yang Q, Yuan Q, Yue L, Li T, Shen H, Zhang L (2019b) The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: about and behind the spatio-temporal variations. Environ Pollut 248:526–535

    Article  CAS  Google Scholar 

  • Yang TT, Hsu CY, Chen YC, Young LH, Huang CH, Ku CH (2017) Characteristics, sources, and health risks of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol Air Qual Res 17(2):563–573

    Article  CAS  Google Scholar 

  • Yilan County Environmental Protection Bureau (Yilan county EPB) (2014) Air quality operation and maintenance management and air quality monitoring survey and cause analysis plan in areas with high concentration of fine suspended particulates (PM2.5). https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=8bbb0aa9-5c39-479d-be93-bc1986498fa7

  • Yilan County Environmental Protection Bureau (Yilan county EPB) (2015) Air quality operation and maintenance management, PM2.5 and harmful air pollutants source monitoring and promotion plan. https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=1ca408ba-5fdf-4704-ae71-bcfe9d6227de

  • Yuan CS (2015) Tempospatial distribution and transboundary transportation of atmospheric fine particle across Bashi channel, Taiwan Strait, and South China Sea. The National Science Committee of the Executive Yuan, Special Research Project, NSC

  • Yilan County Environmental Protection Bureau (Yilan county EPB) (2017a) Air quality improvement and maintenance and environmental monitoring plan. https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=0023a2a5-1f75-4c31-9611-eea0077ea860

  • Yilan County Environmental Protection Bureau (Yilan county EPB) (2017b) Mobile pollution source inspection and control and locomotive exhaust regular inspection service management plan. https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=1e658871-19ef-400a-83e5-ca83ec7b28e3

  • Yilan County Environmental Protection Bureau (Yilan county EPB) (2019a) Air quality improvement and maintenance and environmental monitoring plan. https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=14cb2d56-1b73-4364-a4e9-a4c8e5e5117f

  • Yilan County Environmental Protection Bureau (Yilan county EPB) (2019b) Traffic air quality monitoring survey project. https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=4e05d9b0-de29-4a6b-8757-a5a4708490f5

  • Zhou Y, Chang FJ, Chang LC, Kao IF, Wang YS (2019) Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod 209:134–145

    Article  CAS  Google Scholar 

  • Zhou Y, Chang LC, Chang FJ (2020) Explore a multivariate Bayesian uncertainty processor driven by artificial neural networks for probabilistic PM2.5 forecasting. Sci Total Environ 711:134792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Ministry of Science and Technology, Taiwan, ROC (Grant number: MOST 106-3114-M-002-001-A, MOST 108-2119-M-002-017-A, and MOST 107-2811-M-002-3118). The datasets provided by the Environmental Protection Administration, Taiwan, ROC, are acknowledged. The authors would like to thank the editors and anonymous reviewers for their constructive comments that are greatly contributive to improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fi-John Chang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YS., Chang, LC. & Chang, FJ. Explore Regional PM2.5 Features and Compositions Causing Health Effects in Taiwan. Environmental Management 67, 176–191 (2021). https://doi.org/10.1007/s00267-020-01391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-020-01391-5

Keywords

Navigation