Advertisement

Environmental Management

, Volume 63, Issue 6, pp 822–834 | Cite as

Geodiversity Hotspots: Concept, Method and Cartographic Application for Geoconservation Purposes at a Regional Scale

  • François BétardEmail author
  • Jean-Pierre Peulvast
Article
  • 95 Downloads

Abstract

As a parallel to the “biodiversity hotspot” concept used in conservation biology, “geodiversity hotspots” can be defined as geographic areas that harbor very high levels of geodiversity while being threatened by human activities. Identifying geodiversity hotspots may offer a powerful way to set geoconservation priorities, but numerical methods integrating both geodiversity values and threats are still lacking. Here we propose for the first time an integrated approach using GIS and geoprocessing to map geodiversity hotspots at a regional scale, with a cartographic application to the Ceará State (Northeastern Brazil). The method is based on the quantification and mapping of two numerical indices: a geodiversity index (GI) and a threat index (TI). On one hand, the GI is calculated as the sum of four sub-indexes representing the main components of geodiversity, i.e., geological diversity (rocks, minerals, fossils), geomorphodiversity (topography and landforms), pedodiversity (soils and palaeosoils) and hydrodiversity (surface and underground waters). On the other hand, the TI is calculated as the sum of three sub-indexes including the level of environmental protection, the degree of land degradation and the type of land use. Mapping and delineation of geodiversity hotspots are automatically obtained from a combination of GI and TI, i.e., in areas where higher geodiversity indexes coincide with higher threat indexes. In the study area, results show the spatial delimitation of five geodiversity hotspots, including the Araripe basin (to the South), partly recognized as a UNESCO Global Geopark since 2006, and the Fortaleza metropolitan region (to the North), both faced with severe threats to geodiversity. In addition to a tool for geoconservation, geodiversity hotspots could also provide useful support for biodiversity research and action programs, given the structural and functional links between geodiversity and biodiversity.

Keywords

Geodiversity Hotspots Geoconservation Quantitative assessment Brazil 

Notes

Acknowledgements

This work was made possible by the financial and material support of the laboratory PRODIG (UMR 8586) and of the digital platform “Pôle Image” of the Paris-Diderot University. We are particularly thankful to the anonymous reviewers for their careful reading of our manuscript and their insightful comments and suggestions.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

267_2019_1168_MOESM1_ESM.docx (14 kb)
Online Resources
267_2019_1168_MOESM2_ESM.jpg (4 mb)
Online Resource 1
267_2019_1168_MOESM3_ESM.jpg (1.8 mb)
Online Resource 2
267_2019_1168_MOESM4_ESM.jpg (1.6 mb)
Online Resource 3
267_2019_1168_MOESM5_ESM.jpg (1.8 mb)
Online Resource 4

References

  1. Araujo AM, Pereira DI (2018) A new methodological contribution for the geodiversity assessment: applicability to Ceará State (Brazil). Geoheritage 10(4):591–605CrossRefGoogle Scholar
  2. Benito-Calvo A, Pérez-González A, Magri O, Meza P (2009) Assessing regional geodiversity: The Iberian Peninsula. Earth Surf Process Landf 34:1433–1445CrossRefGoogle Scholar
  3. Bétard F (2016) Geodiversity Hotspots: a proposed conceptual and methodological framework for defining geoconservation priorities. In Geophysical Research Abstracts of the European Geosciences Union General Assembly. Vol 18. EGU, Vienna, April 2016. p 1825Google Scholar
  4. Bétard F, Peulvast JP, Magalhães AO, Carvalho Neta ML, Freitas FI (2018) Araripe Basin: a major geodiversity hotspot in Brazil. Geoheritage 10(4):543–558CrossRefGoogle Scholar
  5. Brazier V, Bruneau PM, Gordon JE, Rennie AF (2012) Making space for nature in a changing climate: The role of geodiversity in biodiversity conservation. Scott Geogr J 128:211–233CrossRefGoogle Scholar
  6. Brilha J (2002) Geoconservation and protected areas. Environ Conserv 29:273–1276CrossRefGoogle Scholar
  7. Brilha J, Gray M, Pereira DI, Pereira P (2018) Geodiversity: an integrative review as a contribution to the sustainable management of the whole of nature. Environ Sci Pol 86:19–28CrossRefGoogle Scholar
  8. Brocx M, Semeniuk V (2007) Geoheritage and geoconservation - History, definition, scope and scale. J Roy Soc West Austr 90:53–87Google Scholar
  9. Brown EJ, Prosser CD, Stevenson NM (2012) Geodiversity, conservation and climate change: key principles for adaptation. Scott Geogr J 128:234–239CrossRefGoogle Scholar
  10. Brown ED, Williams BK (2016) Ecological integrity assessment as a metric of biodiversity: are we measuring what we say we are? Biodivers Conserv 25:1011–1035CrossRefGoogle Scholar
  11. Comer PJ, Pressey RL, Hunter ML Jr, Schloss CA, Buttrick SC, Heller NE, Tirpak JM, Faith DP, Cross MS, Shaffer ML (2015) Incorporating geodiversity into conservation decisions Conserv Biol 29(3):692–701CrossRefGoogle Scholar
  12. CPRM (2003) Atlas digital de geologia e recursos minerais do Ceará. Mapas na escala 1:500,000. Serviço Geológico do Brasil, FortalezaGoogle Scholar
  13. CPRM (2014) Mapa hidrogeológico do Brasil: escala 1:5.500.000. CPRM/Serviço Geológico do Brasil, BrasíliaGoogle Scholar
  14. Crofts R, Gordon JE (2015) Geoconservation in protected areas. In: Worboys GL, Lockwood M, Kothari A, Feary S, Pulsford I (eds) Protected area governance and management. ANU Press, Canberra, p 531–568Google Scholar
  15. Erikstad L (2013) Geoheritage and geodiversity management – the questions for tomorrow. Proc Geol Assoc 124(4):713–719CrossRefGoogle Scholar
  16. Fuertes-Gutiérrez I, Fernández-Martínez E (2012) Mapping geosites for geoheritage management: a methodological proposal for the regional park of Picos de Europa (León, Spain). Environ Manage 50(5):789–806CrossRefGoogle Scholar
  17. Gaiotti MG, Mascarenhas W, Macedo RH (2017) The critically endangered and endemic Araripe Manakin (Antilophia bokermanni): Dietary assessment for conservation purposes. Wilson J Ornithol 129(4):783–791CrossRefGoogle Scholar
  18. Gordon JE, Barron HF (2013) The role of geodiversity in delivering ecosystem services and benefits in Scotland. Scott J Geol 49(1):41–58CrossRefGoogle Scholar
  19. Gordon JE, Barron HF, Hansom JD, Thomas MF (2012) Engaging with geodiversity—why it matters. Proc Geol Assoc 123(1):1–6CrossRefGoogle Scholar
  20. Gordon JE, Leys KF (eds) (2001) Earth science and the natural heritage. Interactions and integrated management. The Stationery Office, EdinburghGoogle Scholar
  21. Gordon JE, MacFadyen CCJ (2001) Earth heritage conservation in Scotland: State, pressures and issues. In: Gordon JE, Leys KF (eds) Earth science and the natural heritage. Stationary Office Books, Edinburg, p 130–144Google Scholar
  22. Gray M (2008) Geodiversity: developing the paradigm. Proc Geol Assoc 119(3):287–298CrossRefGoogle Scholar
  23. Gray M (2011) Other nature: Geodiversity and geosystem services. Environ Conserv 38:271–274CrossRefGoogle Scholar
  24. Gray M (2013) Geodiversity: Valuing and conserving abiotic nature. 2nd edn. John Wiley & Sons Ltd, ChichesterGoogle Scholar
  25. Gray M, Gordon JE, Brown EJ (2013) Geodiversity and the ecosystem approach: the contribution of geoscience in delivering integrated environmental management. Proc Geol Assoc 124(4):659–673CrossRefGoogle Scholar
  26. Gurgel SP, Bezerra FH, Corrêa AC, Marques FO, Maia RP (2013) Cenozoic uplift and erosion of structural landforms in NE Brazil. Geomorphology 186:68–84CrossRefGoogle Scholar
  27. Hrdina A, Romportl D (2017) Evaluating global biodiversity hotspots–very rich and even more endangered. J Landsc Ecol 10(1):108–115CrossRefGoogle Scholar
  28. Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115:109–116CrossRefGoogle Scholar
  29. Hjort J, Gordon JE, Gray M, Hunter ML Jr (2015) Why geodiversity matters in valuing nature’s stage Conserv Biol 29(3):630–639CrossRefGoogle Scholar
  30. IBGE (2014) Mapa de cobertura e uso da terra do Brasil na escala 1:1.000.000. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, ftp://geoftp.ibge.gov.br/
  31. IPECE (2007) Classes de solos. Ceará em mapas. IPECE – Instituto de Pesquisa e Estratégia Econômica do Ceará, FortalezaGoogle Scholar
  32. Kareiva P, Marvier M (2003) Conserving biodiversity coldspots. Am Sci 91:344–351CrossRefGoogle Scholar
  33. Knight J (2011) Evaluating geological heritage: Correspondence on Ruban, ‘Quantification of geodiversity and its loss’. Proc Geol Assoc 122(3):508–510CrossRefGoogle Scholar
  34. Maia RP, Bezerra FHR, Nascimento MAL, de Castro HS, de Andrade Meireles AJ, Rothis LM (2015) Geomorfologia do campo de Inselbergues de Quixadá, nordeste do Brasil. Rev Bras Geomorf 16(2):239–253CrossRefGoogle Scholar
  35. Marchese C (2015) Biodiversity hotspots: A shortcut for a more complicated concept. Glob Ecol Conserv 3:297–309CrossRefGoogle Scholar
  36. Mittermeier RA, Myers N, Mittermeier CG, Robles G (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, SA, Agrupación Sierra Madre, SC, MexicoGoogle Scholar
  37. Myers M (1988) Threatened biotas: “Hotspots” in tropical forests. Environmentalist 8(3):187–208CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  39. MMA - Ministério do Meio Ambiente (2007) Atlas das áreas susceptíveis à desertificação do Brasil. MMA, Secretaria de Recursos Hídricos, BrasíliaGoogle Scholar
  40. MMA - Ministério do Meio Ambiente (2012) Unidades de conservação do Brasil. Cadastro Nacional de Unidades de Conservação, Departamento de Áreas Protegidas - DAP/SBF/MMA, BrasíliaGoogle Scholar
  41. Peña L, Monge-Ganuzas M, Onaindia M, De Manuel BF, Mendia M (2017) A holistic approach including biological and geological criteria for integrative management in protected areas. Environ Manage 59(2):325–337CrossRefGoogle Scholar
  42. Pereira DI, Pereira P, Brilha J, Santos L (2013) Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environ Manage 52(3):541–552CrossRefGoogle Scholar
  43. Peulvast JP, Bétard F (2015) Landforms and landscape evolution of the equatorial margin of Northeast Brazil: an overview. Springer, Earth System Sciences Series. Cham Heidelberg, New York, Dordrecht LondonGoogle Scholar
  44. Peulvast JP, Claudino Sales V (2003) Carta morfoestrutural do Ceará e areas adjacentes do Rio Grande do Norte e da Paraíba. In: CPRM (ed) Atlas digital de geologia e recursos minerais do Ceará. Mapas na escala 1:500,000. Serviço Geológico do Brasil, Fortaleza, CD RomGoogle Scholar
  45. Peulvast JP, Claudino Sales V (2004) Stepped surfaces and palaeolandforms in the northern Brazilian «Nordeste»: constraints on models of morphotectonic evolution. Geomorphology 62(1–2):89–122CrossRefGoogle Scholar
  46. Prosser CD, Brown EJ, Larwood JG, Bridgland DR (2013) Geoconservation for science and society – an agenda for the future. Proc Geol Assoc 124(4):561–567CrossRefGoogle Scholar
  47. Prosser CD, Burek CV, Evans DH, Gordon JE, Kirkbride VB, Rennie AF, Walmsley CA (2010) Conserving geodiversity sites in a changing climate: Management challenges and responses. Geoheritage 2(3–4):123–136CrossRefGoogle Scholar
  48. Reynard E, Brilha J (eds) (2018) Geoheritage: assessment, protection, and management. Elsevier, AmsterdamGoogle Scholar
  49. Ribeiro-Silva S, de Medeiros MB, Gomes BM, Seixas ENC, da Silva MAP (2012) Angiosperms from the Araripe national forest, Ceará, Brazil. Check List 8(4):744–751CrossRefGoogle Scholar
  50. Ruban DA (2010) Quantification of geodiversity and its loss. Proc Geol Assoc 121(3):326–333CrossRefGoogle Scholar
  51. Santini L, Belmaker J, Costello MJ, Pereira HM, Rossberg AG, Schipper AM et al. (2017) Assessing the suitability of diversity metrics to detect biodiversity change. Biol Conserv 213:341–350CrossRefGoogle Scholar
  52. Santos DS, Mansur KL, Gonçalves JB, Arruda ERJ, Manosso FC (2017) Quantitative assessment of geodiversity and urban growth impacts in Armação dos Búzios, Rio de Janeiro, Brazil. Appl Geogr 85:184–195CrossRefGoogle Scholar
  53. Serrano E, Ruiz-Flaño P (2007) Geodiversity. A theoretical and applied concept. Geogr Helv 62(3):140–147CrossRefGoogle Scholar
  54. Sharples C (1993) A methodology for the identification of significant landforms and geological sites for geoconservation purposes. Report to Forestry Commission, Hobart, TasmaniaGoogle Scholar
  55. Sharples C (1995) Geoconservation in forest management. Principles and procedures. Tasforests 7:37–50Google Scholar
  56. Silva JP, Pereira DI, Aguiar AM, Rodrigues C (2013) Geodiversity assessment of the Xingu drainage basin. J Maps 9(2):254–262CrossRefGoogle Scholar
  57. Stepišnik U, Trenchovska A (2018) A new quantitative model for comprehensive geodiversity evaluation: the Škocjan Caves Regional Park, Slovenia. Geoheritage 10(1):39–48CrossRefGoogle Scholar
  58. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 8(6):913–920CrossRefGoogle Scholar
  59. Biodiversity hotspots: concepts, applications and challenges. In: Lanzerath D, Friele M (eds) Concepts and Values in Biodiversity. Routledge, Abingdon, Oxon; New York, NY, p 245–269Google Scholar
  60. Zwoliński Z, Najwer A, Giardino M (2018) Methods for assessing geodiversity. In: Reynard E, Brilha J (eds) Geoheritage: assessment, protection, and management. Elsevier Inc., Amsterdam, p 27–52Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Paris-Diderot, Sorbonne Paris Cité, UMR 8586 PRODIGParisFrance
  2. 2.Sorbonne Université, Institut de GéographieParisFrance

Personalised recommendations