Skip to main content
Log in

Windbreak Efficiency in Agricultural Landscape of the Central Europe: Multiple Approaches to Wind Erosion Control

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Windbreak is one of the key factors for making the agriculture systems successful through reduced wind erosion, improved microclimate, increased biodiversity, and production potentiality of timber and agricultural crops. Even though windbreak occupies only a small part of agricultural landscape, its advantages on the ecological and economical perspective are quite high. This study evaluated the effects of three windbreak types on the wind erosion control in relation to their structural diversities, wind-speed reduction, and optical porosities in the central part of the Czech Republic. Diversity in the windbreak was evaluated based on its species diversity, vertical structure, spatial pattern, and complexities. Wind speed was measured at the different distances on the leeward side of the windbreak and one station placed on the windward side as a control. Windbreak characteristics were described by terrestrial photogrammetry method using the values of optical porosity. The timber volume of the windbreaks with rich biodiversity species ranged from 224 to 443 m3 ha−1height of the windbreak on the. Results of the windbreak efficiency showed significantly closer relationship between optical porosity and structural indices. The optical porosity significantly correlated with wind-speed reduction, especially in the lower part of the windbreak. A significant dependency of the windbreak efficiency on the tree dominant height was also observed for each windbreak type. The most significant effect on the wind-speed reduction in terms of structural indices had total diversity index and Arten-profile index describing vertical structures, which are recommended together with the optical porosity to evaluate the windbreak efficiency in controlling wind erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel N, Baxter J, Campbell A, Cleugh H, Fargher J, Lambeck R, Prinsley R, Prosser M, Ried R, Revell G, Schmidt C, Stirzaker R, Thornburn P (1997) Design principles for farm forestry: a guide to assist farmers to decide where to place trees and farm plantations on farms. Rural Industries Research and Development Corporation, Canberra

    Google Scholar 

  • Alemu MM (2016) Ecological benefits of trees as windbreaks and shelterbelts. Int J Ecosyst 6:10–13

    Google Scholar 

  • Bílek L, Vacek S, Vacek Z, Remeš J, Král J, Bulušek D, Gallo J (2016) How close to nature is close-to-nature pine silviculture? J Sci 62:24–34

    Article  Google Scholar 

  • Bird PR, Bicknell D, Bulman PA, Burke SJA, Leys JF, Parker JN, van der Sommen FJ, Voller P (1992) The role of shelter in Australia for protecting soils, plants and livestock. Agrofor Syst 18:59–86

    Article  Google Scholar 

  • Bitog JP, Lee IB, Hwang HS, Shin MH, Hong SW, Seo IH, Kwon KS, Mostafa E, Pang Z (2012) Numerical simulation study of a tree windbreak. Biosyst Eng 111:40–48

    Article  Google Scholar 

  • Bošela M, Štefančík I, Petráš R, Vacek S (2016) The effects of climate warming on the growth of European beechforests depend critically on thinning strategy and site productivity. Agric Meteorol 222:21–31

    Article  Google Scholar 

  • Brandle JR, Johnson BB, Akeson T (1992) Field windbreaks: are they economical? J Prod Agric 5:393–398

    Article  Google Scholar 

  • Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in North American agricultural systems. Agrofor Syst 61:65–78

    Article  Google Scholar 

  • Bulušek D, Vacek Z, Vacek S, Král J, Bílek L, Králíček I (2016) Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland. J Sci 62:293–305

    Article  Google Scholar 

  • Burke S (1998) Windbreaks. Inkata Press, Port Melbourne

    Google Scholar 

  • Cablík J, Jůva K (1963) Protierozní ochrana půdy. SZN, Praha

  • Campi O, Palumbo AD, Mastrorilli M (2009) Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment. Eur J Agron 30:220–227

    Article  Google Scholar 

  • Chendev YG, Sauer TJ, Ramirez GH, Burras CL (2015) History of East European Chernosem soil degradation; protection and restoration by tree windbreaks in the Russian steppe. Sustainability 7:705–724

    Article  CAS  Google Scholar 

  • Clark P, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationship in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Cleugh HA, Huhges DE (2002) Impact of shelter on crop microclimates: a synthesis of results from wind tunnel and field experiments. Aust J Exp Agr 42:679–701

    Article  Google Scholar 

  • Cornelis WM, Gabriels D (2005) Optimal windbreak design for wind-erosion control. J Arid Environ 61:315–332

    Article  Google Scholar 

  • Crookston NL, Stage AR (1999) Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-24. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT

  • Du H, Wang T, Xue X (2017) Potential wind erosion rate response to climate and land‐use changes in the watershed of the Ningxia–Inner Mongolia reach of the Yellow River, China, 1986–2013. Earth Surf Process Landforms 42:1923–1937

    Article  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Erb KH (2012) How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol Econ 76:8–14

    Article  Google Scholar 

  • FAO—Food and Agriculture Organization of the United Nations (1989) Arid ZoneForestry: A Guide for Field Technicians. Delle Terme di Caracalla, Rome, Italy, 00100

    Google Scholar 

  • Fekete Š (1961) Vetrolamy v prírodnom prostredí Slovenska. Slovenské vydavatelstvo podohospodárskej literatúry, Bratislava

  • Ferreira AD (2011) Structural design of a natural windbreak using computational and experimental modeling. Environ Fluid Mech 11(5):517–530

    Article  Google Scholar 

  • Ferris-Kaan R, Peace AJ, Humphrey JW (1998) Assessing structural diversity in managed forests. In: Bachmann P (Ed.) Assessment of biodiversity for improved forest planning. European Forest Institute Proceedings 18. Kluwer Academic Publishers, Dordrecht, pp 331–342.

  • FMI (2003) Inventarizace lesů, Metodika venkovního sběru dat. FMI, Brandýs nad Labem

  • Forman RTT, Gordon M (1986) Lanscape ecology. John Wiley, New York, NY

    Google Scholar 

  • Fukamachi K, Miki Y, Oku H, Miyoshi I (2011) The biocultural link: isolated trees and hedges in Satoyama landscapes indicate a strong connection between biodiversity and local cultural features. Landsc Ecol Eng 7:195–206

    Article  Google Scholar 

  • Füldner K (1995) Strukturbeschreibung in Mischbeständen. Forstarchiv 66:235–606

    Google Scholar 

  • Gardiner B, Palmer H, Hislop M (2006) The principles of using woods for shelter, Forestry Commission Information Note, 2006, vol. 81. Forestry Commission, Edinburgh

  • Geyer CJ (1999) Likelihood inference for spatial point processes. In: Barndorff-Nielsen OE, Kendall WS and Van Lieshout MNM (Eds.) Stochastic geometry: likelihood and computation, Chapter 3, Monographs on statistics and applied probability, number 80. Chapman and Hall/CRC, Boca Raton, FL, pp 79–140.

  • Heisler GM, DeWalle DR (1988) Effects of windbreak structure on wind flow. Agric Ecosyst Environ 22/23:41–69

    Article  Google Scholar 

  • Hupy JP (2004) Influence of vegetation cover and crust type on wind-blown sediment in a semi-arid climate. J Arid Environ 58:167–179

    Article  Google Scholar 

  • Jaehne SC, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwiss Cent 116:333–345

    Article  Google Scholar 

  • Janeček M, Dostál T, Kozlovsky-Dufková J, Dumbrovský M, Hůla J, Kadlec V, Kovář P, Krása T et al. (2012) Erosion control in the Czech Republic—handbook. Czech University of Life Sciences, Prague

    Google Scholar 

  • Jepsen MR, Kuemmerle T, Muller D, Erb K, Verburgf PH, Haberl H, Vesterager JP, Andric M et al. (2015) Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 49:53–64

    Article  Google Scholar 

  • Kolibáčová S (2000) Dendrologický průzkum větrolamů na jižní Moravě. LDF MZLU v Brně, Brno

  • Köppen W (1936) Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Kort J (1988) Benefits of windbreaks to field and forage crops. Agric Ecosyst Environ 22:165–190

    Article  Google Scholar 

  • Král J, Vacek S, Vacek Z, Putalová T, Bulušek D, Štefančík I (2015) Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979-2014. Cent Eur J 61:175–187

    Google Scholar 

  • Králíček I, Vacek Z, Vacek S, Remeš J, Bulušek D, Král J, Štefančík I, Putalová T (2017) Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology 77:121–139

    Article  Google Scholar 

  • Kuhns M (2012) Windbreak benefits and design (Rural/Conservation Forestry/Utah Forest Facts). Utah State University, Cooperative Extension, Logan, UT

  • Lee KH, Ehsani R, Castle WS (2010) A laser scanning system for estimating wind velocity reduction through tree windbreaks. Comput Electron Agric 73:1–6

    Article  Google Scholar 

  • Li J, Okin GS, Alvarez L, Epstein H (2007) Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 85:317–332

    Article  Google Scholar 

  • Lin XJ, Barrington S, Nicell J, Choinière D, King S (2007) Livestock odour dispersion as affected by natural windbreaks. Water Air Soil Poll 182:263–273

    Article  CAS  Google Scholar 

  • Loeffler AE, Gordon AM, Gillespie TJ (1992) Optical porosity and windspeed reduction by coniferous windbreaks in Southern Ontario. Agrofor Syst 17:119–133

    Article  Google Scholar 

  • Margalef R (1958) Information theory in ecology. General Syst 3:36–71

    Google Scholar 

  • McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manage 218:1–24

    Article  Google Scholar 

  • Mountford MD (1961) On E.C. Pielou’s index of nonrandomness. J Ecol 49:271–275

    Article  Google Scholar 

  • Muchová Z. et al. (2008) General principles of functional organization of the territory–Kanianka. Prievidza, SK

  • Mužíková B, Jareš V (2010) Seasonal variability of windbreak affectivity and their optical porosity. In: Škarpa P (Ed.) International Ph.D. Students Conference on MendelNet 2010, Brno, Czech Republic, 24 November 2011, pp 412-426

  • Nerlich K, Graeff-Hönninge S, Claupein W (2013) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany Agrofor Syst 87:475–492

    Article  Google Scholar 

  • Neumann M, Starlinger F (2001) The significance of different indices for stand structure and diversity in forests For Ecol Manage 145(1-2):91–106

    Article  Google Scholar 

  • Pasák V (1970) Wind erosion on soils. Scientific Monographs, Výzkumný ústav meliorací, Zbraslav nad Vltavou

  • Peri PL, Bloomberg M (2002) Windbreaks in southern Patagonia, Argentina: a review of research on growth models, windspreed reduction, and effects on crops. Agrofor Syst 56:129–144

    Article  Google Scholar 

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. Cent Eur J 37:49–56

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, USA, New York, NY

    Google Scholar 

  • Podhrázská et al. (2008) Optimalizace funkcí větrolamů v zemědělské krajině. Metodika. VÚMOP, Praha (odd. Brno)

    Google Scholar 

  • Podhrázská et al. (2011) Hodnocení účinnosti trvalých vegetačních bariér v ochraně proti větrné erozi. VÚMOP, Praha

    Google Scholar 

  • Podhrázská J, Kučera J, Středová H (2015) The methods of locating areas exposed to wind erosion in the South Moravia region. Acta Univs Agric Silvic Mendel Brun 63:113–121

    Article  Google Scholar 

  • Pretzsch H (2006) Wissen nutzbar machen für das Management von Waldökosystemen. Allg Forst Z Waldwirtsch Umweltvorsorge 61:1158–1159

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. Springer, New York

  • Quitt E (1971) Klimatické oblasti Československa. Academia, Studia Geographica 16, Geografický ústav ČSAV v Brně, CS

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob Biochem Cy 13:997–1027

    Article  CAS  Google Scholar 

  • Řeháček D, Khel T, Kučera J, Vopravil J, Petera M (2017) Effect of windbreaks on wind speed reduction and soil protection against wind erosion. Soil Water Res 12:128–135

    Article  Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176

    Article  Google Scholar 

  • Šanovec J (1948) Větrolamy, nový způsob meliorace pozemků. Brázda, Praha

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Singh JV (2010) Windbreaks and shelterbelts. Agropedia, ICAR, NAIP, Kanpur, IND

  • Šmelko ŠS, Merganič J (2008) Some methodological aspects of the national forest inventory and monitoring in Slovakia. J Sci 54:476–483

    Article  Google Scholar 

  • Speckart SO, Pardyjak ER (2014) A method for rapidly computing windbreak flow field variables. J Wind Eng Ind Aerodyn 132:101–108

    Article  Google Scholar 

  • Sreekar R, Mohan A, Das S, Agarwal P, Vivek R (2013) Natural windbreaks sustain bird diversity in a tea-dominated landscape. PLoS ONE 8:e70379

    Article  CAS  Google Scholar 

  • Steen KA, Villa-Henriksen A, Therkildsen OR, Green O (2012) Automatic detection of animals in mowing operations using thermal cameras. Sensor 12:7587–7597

    Article  Google Scholar 

  • Stoeckeler JH (1962) Shelterbelt influence on Great Plains field environment and crops. Prod. Res. Rep., No. 62, Washington

  • Straight R, Brandle J (2007) Windbreak density: rules of thumb for design. USDA, National Agroforestry Center, North 38th Street & East Campus Loop, UNL–East Campus, Lincoln, NE

    Google Scholar 

  • Středa T, Malenová P, Pokladníková H, Rožnovský J (2008) The efficiency of windbreaks on the basis of wind field and optical porosity measurement. Acta Univs Agric Silvic Mendel Brun 56:281–288

    Article  Google Scholar 

  • Středová H, Podhrázská J, Litschmann T, Středa T, Rožnovský J (2012) Aerodynamic parameters of windbreak based on its optical porosity. Contrib Geophys Geod 42:213–226

    Google Scholar 

  • Thuyet DV, Do TV, Sato T, Hung TT (2014) Effects of species and shelterbelt structure on wind speed reduction in shelter. Agrofor Syst 88:237–244

    Article  Google Scholar 

  • Tichá S (2009) Větrolamy. In: Vacek S et al. (Eds.) Zakládání a stabilizace lesních porostů na bývalých zemědělských půdách. Lesnická práce, s.r.o., Kostelec nad Černými lesy, pp 223−253

  • Torita H, Satou H (2007) Relationship between shelterbelt structure and mean wind reduction. Agr For Meteorol 145:186–194

    Article  Google Scholar 

  • Vacek S, Hůnová I, Vacek Z, Hejcmanová P, Podrázský V, Král J, Putalová T, Moser WK (2015a) Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. Eur J Res 134:1127–1142

    Article  CAS  Google Scholar 

  • Vacek Z, Vacek S, Bílek L, Král J, Remeš J, Bulušek D, Králíček I (2014) Ungulate impact on natural regeneration in spruce-beech-fir stands in Černý důl Nature Reserve in the Orlické Hory Mountains, case study from Central Sudetes. Forests 5:2929–2946

    Article  Google Scholar 

  • Vacek Z, Vacek S, Bílek L, Remeš J, Štefančík I (2015b) Changes in horizontal structure of natural beech forests on an altitudinal gradient in the Sudetes. Dendrobiology 73:35–45

    Google Scholar 

  • Vézina A (2001) Ľutilisation des haies brise-vent au Québec: bilan et perspectives d’avenir. In: Olivier A, Campeau S (Eds.) Colloque sur ľagroforesterie au Québec, Pratiques actuelles et perspectives d’avenir, Université Laval, 9 April 2001, pp. 4

  • Vigiak O, Sterk G, Warren A, Hagen LJ (2003) Spatial modeling of wind speed around windbreaks. Catena 52:273–288

    Article  Google Scholar 

  • Wan M, Pan CD, Wang M, Jin Y (2005) Application of the digitized measurement on windbreak porosity of farmland shelter-forests. Arid Land Geogr 28:120–123

    Google Scholar 

  • Wolfe SA, Nickling WG (1993) The protective role of sparse vegetation in wind erosion Prog Phys Geogr 17:50–68

    Article  Google Scholar 

  • Wrzesień M, Denisow B (2016) The effect of agricultural landscape type on field martin flora in south eastern Poland. Acta Bot Croat 72:217–225

    Article  Google Scholar 

  • Wu T, Yu M, Wanf G, Wang Z, Duan X, Dong Y, Cheng X (2013) Effects of stand structure on wind speed reduction in a Metasequoia glyptostroboides shelterbelt. Agrofor Syst 87:251–257

    Article  Google Scholar 

  • Yang X, Yu Y, Fan W (2017) A method to estimate the structural parameters of windbreaks using remote sensing. Agrof Syst 91:37–49

    Article  Google Scholar 

  • Zhu JJ, Matsuzaki T, Gonda Y (2003) Optical stratification porosity as a measure of vertical canopy structure in a Japanese coastal forest. Ecol Manag 173:89–104

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech National Agency for Agricultural Research, Project No. QJ1330121 and the Czech University of Life Sciences in Prague, Faculty of Forestry and Wood Sciences, Internal Grant Agency, Project No. B02/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Vacek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacek, Z., Řeháček, D., Cukor, J. et al. Windbreak Efficiency in Agricultural Landscape of the Central Europe: Multiple Approaches to Wind Erosion Control. Environmental Management 62, 942–954 (2018). https://doi.org/10.1007/s00267-018-1090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-018-1090-x

Keywords

Navigation