River Continuity Restoration and Diadromous Fishes: Much More than an Ecological Issue

Abstract

Ecosystem fragmentation is a serious threat to biodiversity and one of the main challenges in ecosystem restoration. River continuity restoration (RCR) has often targeted diadromous fishes, a group of species supporting strong cultural and economic values and especially sensitive to river fragmentation. Yet it has frequently produced mixed results and diadromous fishes remain at very low levels of abundance. Against this background, this paper presents the main challenges for defining, evaluating and achieving effective RCR. We first identify challenges specific to disciplines. In ecology, there is a need to develop quantitative and mechanistic models to support decision making, accounting for both direct and indirect impacts of river obstacles and working at the river catchment scale. In a context of dwindling abundances and reduced market value, cultural services provided by diadromous fishes are becoming increasingly prominent. Methods for carrying out economic quantification of non-market values of diadromous fishes become ever more urgent. Given current challenges for rivers to meet all needs sustainably, conflicts arise over the legitimate use of water resources for human purposes. Concepts and methods from political science and geography are needed to develop understandings on how the political work of public authorities and stakeholders can influence the legitimacy of restoration projects. Finally, the most exciting challenge is to combine disciplinary outcomes to achieve a multidisciplinary approach to RCR. Accordingly, the co-construction of intermediary objects and diagrams of flows of knowledge among disciplines can be first steps towards new frameworks supporting restoration design and planning.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adamowicz W, Boxall P, Williams M, Louviere J (1998) Stated preference approaches for measuring passive use values: choice experiments and contingent valuation. Am J Agric Econ 80:64–75. https://doi.org/10.2307/3180269

    Article  Google Scholar 

  2. Agostinho AA, Agostinho CS, Pelicice FM, Marques EE (2012) Fish ladders: safe fish passage or hotspot for predation? Neotrop Ichtyol 10:687–696

    Article  Google Scholar 

  3. Amoros C, Roux AL (1988) Interaction between water bodies within the floodplains of large rivers: function and development of connectivity. Münstersche Geogr Arb 29:125–130

    Google Scholar 

  4. Araújo F, Pinto B, Teixeira T (2009) Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: Evaluating environmental influences and some concepts in river ecology. Hydrobiologia 618:89–107

    Article  Google Scholar 

  5. Arthington AH, Naiman RJ, McCLAIN ME, Nilsson C (2010) Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshw Biol 55:1–16. https://doi.org/10.1111/j.1365-2427.2009.02340.x

    Article  Google Scholar 

  6. Bagliniere J-L, Sabatié MR, Rochard E et al. (2003) The allis shad Alosa alosa: biology, ecology, range, and status of populations. Am Fish Soc Symp 35:85–102

    Google Scholar 

  7. Baker S, Eckerberg K (2013) A policy analysis perspective on ecological restoration. Ecol Soc 18:17–27

    Article  Google Scholar 

  8. Barthélémy C, Armani G (2015) A comparison of social processes at three sites of the French Rhône River subjected to ecological restoration. Freshw Biol 60:1208–1220. https://doi.org/10.1111/fwb.12531

    Article  Google Scholar 

  9. Barthélémy C, Souchon Y (2009) La restauration écologique du fleuve Rhône sous le double regard du sociologue et de l’écologue. Nat Sci Sociétés 17:113–121. https://doi.org/10.1051/nss/2009025

    Article  Google Scholar 

  10. Bartley T (2007) Institutional emergence in an era of globalization: the rise of transnational private regulation of labour and environmental conditions. Am J Sociol 113:297–351

    Article  Google Scholar 

  11. Basset A, Barbone E, Elliott M et al. (2013) A unifying approach to understanding transitional waters: Fundamental properties emerging from ecotone ecosystems. Estuar Coast Shelf Sci 132:5–16. https://doi.org/10.1016/j.ecss.2012.04.012

    Article  Google Scholar 

  12. Berger J, Young JK, Berger KM (2008) Protecting migration corridors: challenges and optimism for Mongolian saiga. PLoS Biol 6:1365–1367. https://doi.org/10.1371/journal.pbio.0060165

    CAS  Article  Google Scholar 

  13. Blackstock KL, Richards C (2007) Evaluating stakeholder involvement in river basin planning: a Scottish case study. Water Policy 9:493

    Article  Google Scholar 

  14. Blackstock KL, Waylen KA, Dunglinson J, Marshall KM (2012) Linking process to outcomes — Internal and external criteria for a stakeholder involvement in River Basin Management Planning. Ecol Econ 77:113–122. https://doi.org/10.1016/j.ecolecon.2012.02.015

    Article  Google Scholar 

  15. Blackwell B, Gries G, Juanes F et al. (1998a) Simulating migration mortality of Atlantic salmon smolts in Merrimack River. North Am J Fish Manage 18:1831–1845

  16. Blackwell B, Gries G, Juanes F et al. (1998b) Simulating migration mortality of Atlantic salmon smolts in the Merrimack Rver. North Am J Fish Manag 18:31–45

    Article  Google Scholar 

  17. Bloom DD, Lovejoy NR (2014) The evolutionary origins of diadromy inferred from a time-calibrated phylogeny for Clupeiformes (herring and allies). Proc R Soc B Biol Sci 281:20132081. https://doi.org/10.1098/rspb.2013.2081

    Article  Google Scholar 

  18. Boisneau P, Mennesson-Boisneau C (2001) Inland commercial fisheries management in France. Fish Manag Ecol 8:303–310. https://doi.org/10.1111/j.1365-2400.2001.00255.x

    Article  Google Scholar 

  19. Boujut J-F, Blanco E (2003) Intermediary objects as a means to foster co-operation in engineering design. Comput Support Coop Work CSCW 12:205–219

    Article  Google Scholar 

  20. Bouleau G (2014) The co-production of science and waterscapes: The case of the Seine and the Rhône Rivers, France. Geoforum 57:248–257. https://doi.org/10.1016/j.geoforum.2013.01.009

    Article  Google Scholar 

  21. Bracken J, Kennedy M (1967) Notes on some Irish estuarine and inshore fishes. Irish Fisheries Investigations Series B (Marine) 3:1–28

  22. Breine JJ, Maes J, Quataert P et al. (2007) A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium). Hydrobiologia 575:141–159. https://doi.org/10.1007/s10750-006-0357-z

    Article  Google Scholar 

  23. Bréthaut C, Pflieger G (2015) The shifting territorialities of the Rhone River’s transboundary governance: a historical analysis of the evolution of the functions, uses and spatiality of river basin governance. Reg Environ Chang 15:549–558. https://doi.org/10.1007/s10113-013-0541-4

    Article  Google Scholar 

  24. Brevé NWP, Buijse AD, Kroes MJ et al. (2014) Supporting decision-making for improving longitudinal connectivity for diadromous and potamodromous fishes in complex catchments. Sci Total Environ 496:206–218. https://doi.org/10.1016/j.scitotenv.2014.07.043

    Article  CAS  Google Scholar 

  25. Briand C, Bonhommeau S, Beaulaton L, Castelnaud G (2008) An appraisal of historical glass eel fisheries and markets: landings, trade route and future prospect for management. In: Moriarty C (ed) The Institute of Fisheries Management Annual Conference 2007. Wesport, Ireland

  26. Briand C, Fatin D, Fontenelle G, Feunteun E (2003) Estuarine and fluvial recruitment of the European glass eel, Anguilla anguilla, in an exploited Atlantic estuary. Fish Manag Ecol 10:377–384. https://doi.org/10.1111/j.1365-2400.2003.00354.x

    Article  Google Scholar 

  27. Brönmark C, Hulthén K, Nilsson PA et al. (2014) There and back again: migration in freshwater fishes. Can J Zool 92:467–479. https://doi.org/10.1139/cjz-2012-0277

    Article  Google Scholar 

  28. Brown JJ, Limburg KE, Waldman JR et al. (2013) Fish and hydropower on the US Atlantic coast: failed fisheries policies from half-way technologies. Conserv Lett 6:280–286. https://doi.org/10.1111/conl.12000

    Article  Google Scholar 

  29. Bruijs MCM, Durif CMF (2009) Silver Eel migration and behaviour. Thillart G van den, Dufour S, Rankin JC (eds) Spawning migration of the European eel. Springer, Netherlands, pp 65–95

  30. Buchanan R, Skalski J (2007) A migratory life-cycle release-recapture model for Salmonid PIT-tag investigations. J Agric Biol Environ Stat 12:325–345

    Article  Google Scholar 

  31. Budy P, Theide G, Bouwes N et al. (2002) Evidence linking delayed mortality of Snake River salmon to their earlier hydrosystem experience. North Am J Fish Manag 22:35–51

    Article  Google Scholar 

  32. Buller H (2009) The lively process of interdisciplinarity. Area 41:395–403. https://doi.org/10.1111/j.1475-4762.2008.00856.x

    Article  Google Scholar 

  33. Cabin RJ (2007) Science-driven restoration: A square grid on a round earth? Restor Ecol 15:1–7

    Article  Google Scholar 

  34. Čada G, Loar J, Garrison L et al. (2006) Efforts to reduce mortality to hydroelectric turbine-passed fish: Locating and quantifying damaging shear stresses. Environ Manag 37:898–906

    Article  Google Scholar 

  35. Cameron TA, Poe GL, Ethier RG, Schulze WD (2002) Alternative non-market value-elicitation methods: are the underlying preferences the same? J Environ Econ Manag 44:391–425

    Article  Google Scholar 

  36. Carter C (2013) Constructing sustainability in EU fisheries: Re-drawing the boundary between science and politics? Environ Sci Policy 30:26–35. https://doi.org/10.1016/j.envsci.2012.11.015

    Article  Google Scholar 

  37. Carter C (2014) The transformation of Scottish fisheries: Sustainable interdependence from ‘net to plate. Mar Policy 44:131–138

    Article  Google Scholar 

  38. Carter C, Bouleau G, Le Floch S, Gassiat A (submitted) The policy and social dimension of restoration thinking: Paying greater attention to interdependencies in restoration governing practice. In: Cottet M, Morandi B, Piégay, H (eds) (Forthcoming 2019) Social issues in river restoration projects: interdisciplinary perspectives from researchers and practitioners, John Wiley & Sons, Chichester UK

  39. Castelnaud G (2000) Localisation de la pêche, effectifs de pêcheurs et production des espèces amphihalines dans les fleuves français. Bull Fr Pêche Piscic 357/358:439–460

    Google Scholar 

  40. Castelnaud G (2011) Sturgeon fishing, landings, and caviar production during the twentieth century in the Garonne Basin and the Coastal Sea. In: Williot P, Rochard E, Desse-Berset N, et al. (eds) Biology and conservation of the European SturgeonAcipenser sturioL. 1758. Springer, Berlin Heidelberg, pp 177–193

    Google Scholar 

  41. Caudill C, Daigle W, Keefer M et al. (2007) Slow dam passage in adult Columbia River salmonids associated with unsuccessful migration: Delayed negative effects of passage obstacles or condition-dependent mortality? Can J Fish Aquat Sci 64:979–995

    Article  Google Scholar 

  42. Champion L (1999) Etude socio-économique des pêches professionnelles continentales. Rapp CNAPPEDCSPMin Agric Pêch-CORRAIL Nantes

  43. Chave J (2013) The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol Lett 16:4–16. https://doi.org/10.1111/ele.12048

    Article  Google Scholar 

  44. Citerne P (1998) Le thème du poisson dans l’art paléolithique des Pyrénées. Bull Société Préhistorique Ariège 53:17–64

    Google Scholar 

  45. Citerne P (2004) Présence de l’esturgeon dans le bestiaire figuré paléolithique: conditions et limites de l’analyse morphologique. Bull Société Préhistorique Ariège-Pyrén 59:71–92

    Google Scholar 

  46. Clavero M, Hermoso V (2015) Historical data to plan the recovery of the European eel. J Appl Ecol 52:960–968. https://doi.org/10.1111/1365-2664.12446

    Article  Google Scholar 

  47. Coates S, Waugh A, Anwar A, Robson M (2007) Efficacy of a multi-metric fish index as an analysis tool for the transitional fish component of the Water Framework Directive. Mar Pollut Bull 55:225–240

    CAS  Article  Google Scholar 

  48. Coutant CC, Whitney RR (2000) Fish behavior in relation to passage through hydropower turbines: A review. Trans Am Fish Soc 129:351–380

    Article  Google Scholar 

  49. Crane J (2009) “Setting the river free”: The removal of the Edwards dam and the restoration of the Kennebec River. Water Hist 1:131

    Article  Google Scholar 

  50. Crook K, Pringle C, Freeman M (2009) A method to assess longitudinal riverine connectivity in tropical streams dominated by migratory biota. Aquat Conserv Mar Freshw Ecosyst 19:714–723

    Article  Google Scholar 

  51. Daily GC, Polasky S, Goldstein J et al. (2009) Ecosystem services in decision making: Time to deliver. Front Ecol Environ 7:21–28. https://doi.org/10.1890/080025

    Article  Google Scholar 

  52. Dams LR (1987) Poissons et contours de type pisciforme dans l’art pariétal paléolithique. Bull Société R Belge Anthropol Préhistoire 98:81–132

    Google Scholar 

  53. de Groot RS, Alkemade R, Braat L et al. (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272. https://doi.org/10.1016/j.ecocom.2009.10.006

    Article  Google Scholar 

  54. Dedual M (2007) Survival of juvenile rainbow trout passing through a francis turbine. North Am J Fish Manag 27:181–186

    Article  Google Scholar 

  55. Dekker W (2016) Management of the eel is slipping through our hands! Distribute control and orchestrate national protection. ICES J Mar Sci 73:2442–2452. https://doi.org/10.1093/icesjms/fsw094

    Article  Google Scholar 

  56. Delpech C, Courrat A, Pasquaud S et al. (2010) Development of a fish-based index to assess the ecological quality of transitional waters: The case of French estuaries. Mar Pollut Bull 60:908–918

    CAS  Article  Google Scholar 

  57. Doyle MW, Harbor JM, Stanley EH (2003) Toward policies and decision-making for dam removal. Environ Manag 31:0453–0465. https://doi.org/10.1007/s00267-002-2819-z

    Article  Google Scholar 

  58. Drouineau H, Bau F, Alric A et al. (2017) Silver eel downstream migration in fragmented rivers: use of a Bayesian model to track movements triggering and duration. Aquat Living Resour 30:1–9. https://doi.org/10.1051/alr/2017003

    Article  Google Scholar 

  59. Drouineau H, Rigaud C, Laharanne A et al. (2015) Assessing the efficiency of an elver ladder using a multi-state mark-recapture model. River Res Appl 31:291–300. https://doi.org/10.1002/rra.2737

    Article  Google Scholar 

  60. Eckersley R (2004) The green state: Rethinking democracy and sovereignty. MIT Press, Cambridge, Massassuchets

  61. Eckert C, Boujut J-F (2003) The role of objects in design co-operation: communication through physical or virtual objects. Comput Support Coop Work CSCW 12:145–151

    Article  Google Scholar 

  62. El-Kechai H, Choquet C (2006) Understanding the collective design process by analyzing intermediary objects. In: ICALT (ed) Proceedings of the Sixth IEEE International Conference on Advanced Learning Technologies. IEEE Computer Society, Kerkrade, The Netherlands, pp 1047–1051

  63. Elliott M, Hemingway K (2002) Fishes in Estuaries. Blackwell Science, London

    Google Scholar 

  64. Elliott M, Whitfield AK (2011) Challenging paradigms in estuarine ecology and management. Estuar Coast Shelf Sci 94:306–314. https://doi.org/10.1016/j.ecss.2011.06.016

    Article  Google Scholar 

  65. EU Commission (2011) Our Life in Insurance, our Natural Capital: An EU Biodiversity Strategy to 2020. COM 2011:244

    Google Scholar 

  66. Fagan W (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–3249

    Article  Google Scholar 

  67. Fernandez S, Bouleau G, Treyer S (2014) Bringing politics back into water planning scenarios in Europe. J Hydrol 518:17–27. https://doi.org/10.1016/j.jhydrol.2014.01.010

    Article  Google Scholar 

  68. Feutry P, Castelin M, Ovenden JR et al. (2013) Evolution of Diadromy in Fish: Insights from a Tropical Genus (Kuhlia Species). Am Nat 181:52–63. https://doi.org/10.1086/668593

    Article  Google Scholar 

  69. Forman RTT, Godron M (1986) Landscape ecology. Wiley, NY, p 619

    Google Scholar 

  70. Fox CA, Magilligan FJ, Sneddon CS (2016) “You kill the dam, you are killing a part of me”: Dam removal and the environmental politics of river restoration. Geoforum 70:93–104. https://doi.org/10.1016/j.geoforum.2016.02.013

    Article  Google Scholar 

  71. Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330

    Article  Google Scholar 

  72. Friberg N, Buijse T, Carter C et al. (2017) Effective restoration of aquatic ecosystems: scaling the barriers. Wiley Interdiscip Rev Water 4:n/a-n/a. https://doi.org/10.1002/wat2.1190

  73. Fukushima M, Kameyama S, Kaneko M et al. (2007) Modelling the effects of dams on freshwater fish distributions in Hokkaido, Japan. Freshw Biol 52:1511–1524

    Article  Google Scholar 

  74. Garcia De Leaniz C (2008) Weir removal in salmonid streams: Implications, challenges and practicalities. Hydrobiologia 609:83–96

    Article  Google Scholar 

  75. Gardner C, Coghlan S, Zydlewski J, Saunders R (2013) Distribution and abundance of stream fishes in relation to barriers: Implications for monitoring stream recovery after barrier removal. River Res Appl 29:65–78

    Article  Google Scholar 

  76. Gari SR, Newton A, Icely JD (2015) A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast Manag 103:63–77. https://doi.org/10.1016/j.ocecoaman.2014.11.013

    Article  Google Scholar 

  77. Garibaldi A, Turner N (2004) Cultural keystone species: implications for ecological conservation and restoration. Ecol Soc 9:1

    Article  Google Scholar 

  78. Gergel SE, Carpenter SR, Stanley EH (2005) Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain denitrification. Glob Chang Biol 11:1352–1367. https://doi.org/10.1111/j.1365-2486.2005.00966.x

    Article  Google Scholar 

  79. Germaine M-A, Barraud R (2014) Les rivières de l’ouest de la France sont-elles seulement des infrastructures naturelles? Les modèles de gestion à l’épreuve de la directive-cadre sur l’eau. Nat Sci Sociétés 21:373–384

    Article  Google Scholar 

  80. Germaine M-A, Lespez L (2014) Le démantèlement des barrages de la Sélune (Manche). Des réseaux d’acteurs au projet de territoire? Dév Durable Territ Économie Géographie Polit Droit Sociol. https://doi.org/10.4000/developpementdurable.10525

  81. Ghiotti S (2006) Les Territoires de l’eau et la décentralisation. La gouvernance de bassin versant ou les limites d’une évidence. Dév Durable Territ Économie Géographie Polit Droit Sociol. https://doi.org/10.4000/developpementdurable.1742

  82. Grabosky PN (1995) Governing at a distance: self-regulating green markets. In: Eckersley R (ed) Markets, the State, and the Environment: Towards Integration. Macmillan Education, South Melbourne, Australia, pp 197–228

  83. Haro A, Richkus W, Whalen K et al. (2000) Population decline of the American eel: implications for research and management. Fisheries 25:7–16

    Article  Google Scholar 

  84. Healey P (2004) The Treatment of Space and Place in the New Strategic Spatial Planning in Europe. Int J Urban Reg Res 28:45–67. https://doi.org/10.1111/j.0309-1317.2004.00502.x

    Article  Google Scholar 

  85. Hermoso V, Pantus F, Olley J et al. (2012) Systematic planning for river rehabilitation: integrating multiple ecological and economic objectives in complex decisions. Freshw Biol 57:1–9. https://doi.org/10.1111/j.1365-2427.2011.02693.x

    Article  Google Scholar 

  86. Hitt NP, Eyler S, Wofford JEB (2012) Dam Removal Increases American Eel Abundance in Distant Headwater Streams. Trans Am Fish Soc 141:1171–1179

    Article  Google Scholar 

  87. Holbrook CM, Kinnison MT, Zydlewski J (2011) Survival of Migrating Atlantic Salmon Smolts through the Penobscot River, Maine: a Prerestoration Assessment. Trans Am Fish Soc 140:1255–1268

    Article  Google Scholar 

  88. Horreo JL, Martinez JL, Ayllon F et al. (2011) Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Freshw Biol 56:2567–2579

    Article  Google Scholar 

  89. Humphries P, Winemiller KO (2009) Historical Impacts on River Fauna, Shifting Baselines, and Challenges for Restoration. BioScience 59:673–684. https://doi.org/10.1525/bio.2009.59.8.9

    Article  Google Scholar 

  90. Jager H, Van Winkle W, Holcomb B (1999) Would hydrologic climate changes in Sierra Nevada streams influence trout persistence? Trans Am Fish Soc 128:222–240

    Article  Google Scholar 

  91. Jager HI, Chandler JA, Lepla KB, Van Winkle W (2001) A theoretical study of river fragmentation by dams and its effects on white sturgeon populations. Env Biol Fishes 60:347–361

    Article  Google Scholar 

  92. Jähnig SC, Lorenz AW, Hering D et al. (2011) River restoration success: a question of perception. Ecol Appl 21:2007–2015. https://doi.org/10.1890/10-0618.1

    Article  Google Scholar 

  93. Jørgensen D, Renöfält BM (2013) Damned if you do, dammed if you don’t: debates on dam removal in the Swedish media. Ecol Soc 18:18

    Article  Google Scholar 

  94. Jullien B, Smith A (2014) The EU’s government of industries: Markets, institutions and politics. Routledge, London

  95. Kadri S, Metcalfe NB, Huntingford FA, Thorpe JE (1995) What Controls the Onset of Anorexia in Maturing Adult Female Atlantic Salmon? Funct Ecol 9:790–797. https://doi.org/10.2307/2390254

    Article  Google Scholar 

  96. Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213

    Article  Google Scholar 

  97. Keith DA, Akçakaya HR, Thuiller W et al. (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    Article  Google Scholar 

  98. Kelly FL, King JJ (2001) A Review of the Ecology and Distribution of Three Lamprey Species, Lampetra fluviatilis (L.), Lampetra planeri (Bloch) and Petromyzon marinus (L.): A Context for Conservation and Biodiversity Considerations in Ireland. Biol Environ Proc R Ir Acad 101B:165–185

    Google Scholar 

  99. Kemp P, O’Hanley J (2010) Procedures for evaluating and prioritising the removal of fish passage barriers: A synthesis. Fish Manag Ecol 17:297–322

    Google Scholar 

  100. Kondolf G, Boulton A, O’Daniel S et al. (2006) Process-based ecological river restoration: Visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecol Soc 11. Available at https://www.ecologyandsociety.org/vol11/iss2/art5/

  101. Kondolf GM (1997) PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ Manag 21:533–551

    CAS  Article  Google Scholar 

  102. Kuby M, Fagan W, ReVelle C, Graf W (2005) A multiobjective optimization model for dam removal: An example trading off salmon passage with hydropower and water storage in the Willamette basin. Adv Water Resour 28:845–855

    Article  Google Scholar 

  103. Labonne J, Ravigné V, Parisi B, Gaucherel C (2008) Linking dendritic network structures to population demogenetics: The downside of connectivity. Oikos 117:1479–1490. https://doi.org/10.1111/j.0030-1299.2008.16976.x

    Article  Google Scholar 

  104. Lamouroux N, Gore JA, Lepori F, Statzner B (2015) The ecological restoration of large rivers needs science-based, predictive tools meeting public expectations: an overview of the Rhône project. Freshw Biol 60:1069–1084. https://doi.org/10.1111/fwb.12553

    Article  Google Scholar 

  105. Larinier M (2001) Environmental issues, dams and fish migrations. In: Dams, fish and fisheries: Opportunities, challenges and conflict resolution, FAO fisheries technical paper 419. pp 45–90

  106. Larinier M (2008) Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609:97–108

    Article  Google Scholar 

  107. Lawrence ER, Kuparinen A, Hutchings JA (2016) Influence of dams on population persistence in Atlantic salmon (Salmo salar). Can J Zool 94:329–338

    Article  Google Scholar 

  108. Letcher BH, Nislow KH, Coombs JA et al. (2007) Population response to habitat fragmentation in a stream-dwelling brook trout population. Plos One 2:e1139. https://doi.org/10.1371/journal.pone.0001139

    Article  Google Scholar 

  109. Levin SA (1992) The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture. Ecology 73:1943–1967. https://doi.org/10.2307/1941447

    Article  Google Scholar 

  110. Lichatowich J, Lichatowich JA (2001) Salmon without rivers: A history of the Pacific salmon crisis. Island Press, Washington DC

  111. Lichatowich JA, Williams RN (2009) Failures to incorporate science into fishery management and recovery programs: lessons from the Columbia River. In: American Fisheries Society Symposium. pp 1005–1019

  112. Limburg KE, Waldman JR (2009) Dramatic Declines in North Atlantic Diadromous Fishes. Bioscience 59:955–965. https://doi.org/10.1525/bio.2009.59.11.7

    Article  Google Scholar 

  113. List JA, Sinha P, Taylor MH (2006) Using choice experiments to value non-market goods and services: evidence from field experiments. Adv Econ Anal Policy 5. Available at https://www.degruyter.com/view/j/bejeap.2006.5.2/bejeap.2006.5.2.1132/bejeap.2006.5.2.1132.xml

  114. MacGregor R, Casselman JM, Allen WA et al. (2009) Natural heritage, anthropogenic impacts, and biopolitical issues related to the status and sustainable management of American eel: a retrospective analysis and management perspective at the population level. In: Haro A, Smith KL, Rulifson RA, et al. (eds) Challenges for diadromous fishes in a dynamic global environment. American Fisheries Society, Bethesda, Maryland, pp 713–740

  115. MacGregor R, Mathers A, Thompson P, et al. (2008) Declines of American eel in North America: complexities associated with bi-national management. In: Schechter MG, Taylor WW, Leonard NJ (eds) International Governance of Fisheries Ecosystems. American Fisheries Society, Bethesda, Maryland, pp 357–381

  116. Maes J, Paracchini ML, Zulian G et al. (2012) Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol Conserv 155:1–12

    Article  Google Scholar 

  117. Magilligan FJ, Sneddon CS, Fox CA (2017) The Social, Historical, and Institutional Contingencies of Dam Removal. Environ Manag 59:982–994. https://doi.org/10.1007/s00267-017-0835-2

    CAS  Article  Google Scholar 

  118. Mateo M, Lambert P, Tétard S, Drouineau H (2017) Impacts that cause the highest direct mortality of individuals do not necessarily have the greatest influence on temperate eel escapement. Fish Res 193:51–59. https://doi.org/10.1016/j.fishres.2017.03.024

    Article  Google Scholar 

  119. Matthews W, Robison H (1998) Influence of drainage connectivity, drainage area and regional species richness on fishes of the interior highlands in Arkansas. Am Midl Nat 139:1–19

    Article  Google Scholar 

  120. McCleave J (2001) Simulation of the impact of dams and fishing weirs on reproductive potential of silver-phase American eels in the Kennebec River basin, Maine N Am J Fish Manage 21:21592–21605

  121. McClenachan L, Lovell S, Keaveney C (2015) Social benefits of restoring historical ecosystems and fisheries: alewives in Maine. Ecol Soc 20:31

    Article  Google Scholar 

  122. McDowall RM (1988) Diadromy in Fishes: Migrations Between Freshwater and Marine Environments. Timber Press, Portland, OR

    Google Scholar 

  123. McDowall RM (1997) The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev Fish Biol Fish 7:443–462. https://doi.org/10.1023/A:1018404331601

    Article  Google Scholar 

  124. McDowall RM (1999) Different kinds of diadromy: Different kinds of conservation problems. ICES J Mar Sci J Cons 56:410–413. https://doi.org/10.1006/jmsc.1999.0450

    Article  Google Scholar 

  125. McDowall RM (2008) Diadromy, history and ecology: a question of scale. Hydrobiologia 602:5–14. https://doi.org/10.1007/s10750-008-9290-7

    Article  Google Scholar 

  126. McLaughlin RL, Smyth ERB, Castro-Santos T et al. (2013) Unintended consequences and trade-offs of fish passage. Fish Fish 14:580–604. https://doi.org/10.1111/faf.12003

    Article  Google Scholar 

  127. Meublat G, Lourd PL (2001) Les agences de bassin: un modèle français de décentralisation pour les pays émergents? La rénovation des institutions de l’eau en Indonésie, au Brésil et au Mexique. Rev Tiers Monde 42:375–401

    Article  Google Scholar 

  128. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Island Press, Washington, DC

    Google Scholar 

  129. Morandi B, Piégay H, Lamouroux N, Vaudor L (2014) How is success or failure in river restoration projects evaluated? Feedback from French restoration projects. J Environ Manag 137:178–188. https://doi.org/10.1016/j.jenvman.2014.02.010

    Article  Google Scholar 

  130. Muir W, Marsh D, Sandford B et al. (2006) Post-hydropower system delayed mortality of transported snake river stream-type Chinook salmon: Unraveling the mystery. Trans Am Fish Soc 135:1523–1534

    Article  Google Scholar 

  131. Myers GS (1949) Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 1949:89–97. https://doi.org/10.2307/1438482

    Article  Google Scholar 

  132. Nilsson C, Berggren K (2000) Alterations of Riparian ecosystems caused by river regulation dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time BioScience 50:783–792. http://dx.doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2

    Article  Google Scholar 

  133. Nislow KH, Hudy M, Letcher BH, Smith EP (2011) Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: implications for management and conservation. Freshw Biol 2135–2144

  134. Noonan MJ, Grant JWA, Jackson CD (2012) A quantitative assessment of fish passage efficiency. Fish Fish 13:450–464

    Article  Google Scholar 

  135. Nunn AD, Cowx IG (2012) Restoring river connectivity: Prioritizing passage improvements for diadromous fishes and lampreys. Ambio 41:402–409

    CAS  Article  Google Scholar 

  136. OECD (1993) OECD core set of indicators for environmental performance reviews: A synthesis report by the Group on the State of the Environment. This is a report from the OECD. Report number OCDE/GD(93)179 - Environment monographs n° 83. p 39. Available online at http://enrin.grida.no/htmls/armenia/soe2000/eng/oecdind.pdf

  137. O’Hanley J, Tomberlin D (2005) Optimizing the removal of small fish passage barriers. Environ Model Assess 10:85–98

    Article  Google Scholar 

  138. Olden JD, Konrad CP, Melis TS et al. (2014) Are large-scale flow experiments informing the science and management of freshwater ecosystems? Front Ecol Environ 12:176–185

    Article  Google Scholar 

  139. Pahl-Wostl C, Arthington A, Bogardi J et al. (2013) Environmental flows and water governance: managing sustainable water uses. Curr Opin Environ Sustain 5:341–351

    Article  Google Scholar 

  140. Pahl-Wostl C, Craps M, Dewulf A et al. (2007) Social learning and water resources management. Ecol Soc 12(2). Available at http://www.ecologyandsociety.org/vol12/iss2/art5/

  141. Palmer MA (2008) Reforming watershed restoration: Science in need of application and applications in need of science. Estuaries Coasts 32:1–17. https://doi.org/10.1007/s12237-008-9129-5

    Article  Google Scholar 

  142. Palmer MA, Bernhardt ES (2006) Hydroecology and river restoration: Ripe for research and synthesis. Water Resour Res 42:W03S07. https://doi.org/10.1029/2005WR004354

    Article  Google Scholar 

  143. Palmer MA, Hondula KL, Koch BJ (2014) Ecological restoration of streams and rivers: shifting strategies and shifting goals. Annu Rev Ecol Evol Syst 45:247–269

    Article  Google Scholar 

  144. Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222

    Article  Google Scholar 

  145. Pedersen MI, Jepsen N, Aarestrup K et al. (2012) Loss of European silver eel passing a hydropower station. J Appl Ichthyol 28:189–193

    Article  Google Scholar 

  146. Perkin J, Gido K (2012) Fragmentation alters stream fish community structure in dendritic ecological networks. Ecol Appl 22:2176–2187

    Article  Google Scholar 

  147. Perring MP, Standish RJ, Price JN et al. (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6:art131. https://doi.org/10.1890/ES15-00121.1

    Article  Google Scholar 

  148. Podgorniak T, Milan M, Pujolar JM et al. (2015) Differences in brain gene transcription profiles advocate for an important role of cognitive function in upstream migration and water obstacles crossing in European eel. BMC Genom 16:378. https://doi.org/10.1186/s12864-015-1589-y

    Article  CAS  Google Scholar 

  149. Pont D, Bady P, Logez M, Veslot J (2009) EFI+ Project. Improvement and spatial extension of the European Fish Index Deliverable 4.1: Report on the modelling of reference conditions and on the sensitivity of candidate metrics to anthropogenic pressures. Deliverable 4.2: Report on the final development and validation of the new European Fish Index and method, including a complete technical description of the new method. 6th Framework Programme Priority FP6-2005-SSP-5-A. N° 0044096. Final Report, p 179 http://efiplus.boku.ac.at/

  150. Porcher JP, Travade F (1992) Les dispositifs de franchissement: bases biologiques, limites et rappels réglementaires. Bull Fr Pêche Piscic 326–327:5–14

    Article  Google Scholar 

  151. Postel S, Richter B (2003) Rivers for life: managing water for people and nature. Island Press, Washington DC

  152. Poulet N (2007) Impact of weirs on fish communities in a Piedmont stream. River Res Appl 23:1038–1047

    Article  Google Scholar 

  153. Quignard JP, Douchement CI (1991) Alosa alosa. In: Hoestlandt H (ed) The Freshwater Fishes of Europe. AULA-Verlag, Viesbaden, Germany, pp 89–224

  154. Rahel FJ (2013) Intentional fragmentation as a management strategy in aquatic systems. BioScience 63:362–372. https://doi.org/10.1525/bio.2013.63.5.9

    Article  Google Scholar 

  155. Rechisky E, Welch D, Porter A et al. (2009) Experimental measurement of hydrosystem-induced delayed mortality in juvenile Snake River spring Chinook salmon (Oncorhynchus tshawytscha) using a large-scale acoustic array. Can J Fish Aquat Sci 66:1019–1024

    Article  Google Scholar 

  156. Richard S, Bouleau G, Barone S (2010) Water governance in France: Institutional framework, stakeholders, arrangements and process. In: Jacobi P, Sinisgali P (eds) Water governance and public policies in Latin America and Europe, Anna Blume, Sao Paulo, pp 137–178

  157. Ringuet S, Muto F, Raymakers C (2002) Eels: their harvest and trade in Europe and Asia. TRAFFIC Bull-Camb-TRAFFIC Int 19:80–106

    Google Scholar 

  158. Rougier T, Lassalle G, Drouineau H et al. (2015) The combined use of correlative and mechanistic species distribution models benefits low conservation status species. PLoS One 10:e0139194. https://doi.org/10.1371/journal.pone.0139194

    Article  CAS  Google Scholar 

  159. Sanderson FJ, Donald PF, Pain DJ et al. (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105. https://doi.org/10.1016/j.biocon.2006.02.008

    Article  Google Scholar 

  160. Scholle J, Schuchardt B (2012) A fish-based index of biotic integrity-FAT-TW an assessment tool for transitional waters of the northern German tidal estuaries. EUCC c/o Leibniz-Inst. für Ostseeforschung, Warnemünde

    Google Scholar 

  161. Segurado P, Branco P, Avelar AP, Ferreira MT (2014) Historical changes in the functional connectivity of rivers based on spatial network analysis and the past occurrences of diadromous species in Portugal. Aquat Sci 77:427–440. https://doi.org/10.1007/s00027-014-0371-6

    Article  Google Scholar 

  162. Segurado P, Branco P, Ferreira M (2013) Prioritizing restoration of structural connectivity in rivers: a graph based approach. Landsc Ecol 28:1231–1238

  163. Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465

    Article  Google Scholar 

  164. Susquehanna River Anadromous Fish Restoration Cooperative (2010) Migratory fish management and restoration plan for the Susquehanna River basin. p 124. Available online at https://www.fws.gov/northeast/susquehannariver/pdf/FinalSRAFRCRestorationPlan.pdf

  165. Sutherland W, Freckleton R, Godfray H et al. (2013) Identification of 100 fundamental ecological questions. J Ecol 101:58–67

    Article  Google Scholar 

  166. Svendsen JC, Aarestrup K, Malte H et al. (2011) Linking individual behaviour and migration success in Salmo salar smolts approaching a water withdrawal site: implications for management. Aquat Living Resour 24:201–209

    Article  Google Scholar 

  167. Thuiller W, Albert C, Araújo MB et al. (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  168. Tischendorf L, Fahrig L (2000a) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  169. Tischendorf L, Fahrig L (2000b) How should we measure landscape connectivity? Landsc Ecol 15:633–641

    Article  Google Scholar 

  170. Travade F, Dartiguelongue J, Larinier M (1987) Passage of fish downstream and through turbines and hydroelectric plants: EDF experience. Houille Blanc 42:125–133

    Article  Google Scholar 

  171. Tullos DD, Collins MJ, Bellmore JR et al. (2016) Synthesis of common management concerns associated with dam removal. JAWRA J Am Water Resour Assoc 52:1179–1206. https://doi.org/10.1111/1752-1688.12450

    Article  Google Scholar 

  172. Turner RK, van den Bergh JCJM, Söderqvist T et al. (2000) Ecological-economic analysis of wetlands: scientific integration for management and policy Ecol Econ 35:7–23. https://doi.org/10.1016/S0921-8009(00)00164-6

    Article  Google Scholar 

  173. Vannote RL, Minshall GW, Cummins KW et al. (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  174. Verspoor E, Stradmeyer L, Nielsen J (2007) The atlantic salmon: Genetics, conservation and management. Blackwell Publishing Ltd, Oxford, UK

    Google Scholar 

  175. Vinck D (1999) Les objets intermédiaires dans les réseaux de coopération scientifique. Contribution à la prise en compte des objets dans les dynamiques sociales. Rev Fr Sociol 40:385–414. https://doi.org/10.2307/3322770

    Article  Google Scholar 

  176. Vinck D (2003) L’instrumentation du travail interdisciplinaire: cadrage des échanges et médiation par les objets intermédiaires. Esprit Crit Rev Int Sociol Sci Soc 5

  177. Vinck D, Jeantet A (1995) Mediating and commissioning objects in the sociotechnical process of product design: a conceptual approach. In: MacLean D, Saviotti P, Vinck D (eds) Management and new technology: design, networks and strategy. Directorate General Science, R&D, Brussels, Belgium, pp 111–129

  178. Ward J, Stanford J (1995) Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul Rivers Res Manag 11:105–119

    Article  Google Scholar 

  179. Ward J, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: Ecotones and connectivity. River Res Appl 15:125–139

    Article  Google Scholar 

  180. Webb J, Padgham M (2013) How does network structure and complexity in river systems affect population abundance and persistence? Limnologica 43:399–403

  181. Welch D, Rechisky E, Melnychuk M et al. (2008) Survival of migrating salmon smolts in large rivers with and without dams. PLoS Biol 6:2101–2108

    CAS  Google Scholar 

  182. Wilcove DS, Wikelski M (2008) Going, going, gone: Is animal migration disappearing. PLoS Biol 6:e188. https://doi.org/10.1371/journal.pbio.0060188

    Article  CAS  Google Scholar 

  183. Wolanski E, McLusky D, van den Belt M, Costanza R (2011) Ecological Economics of Estuaries and Coasts. Academic Press, London, UK

    Google Scholar 

  184. Wortley L, Hero J-M, Howes M (2013) Evaluating ecological restoration success: a review of the literature. Restor Ecol 21:537–543

    Article  Google Scholar 

  185. Zheng PQ, Hobbs BF, Koonce JF (2009) Optimizing multiple dam removals under multiple objectives: Linking tributary habitat and the Lake Erie ecosystem. Water Resour Res 45:W12417. https://doi.org/10.1029/2008WR007589

    Google Scholar 

  186. Zylberblat M, Amoros C, Stroffek S (1996) La logique de réhabilitation physique appliquée à un grand fleuve: le Rhône [A methodology for physical restoration applied to a major river: the Rhône]. Rev Géographie Lyon 71:287–296. https://doi.org/10.3406/geoca.1996.4348

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Christian Rigaud, Clarisse Cazals and Guy Verreault for fruitful discussions, and three anonymous referees for their constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Drouineau.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drouineau, H., Carter, C., Rambonilaza, M. et al. River Continuity Restoration and Diadromous Fishes: Much More than an Ecological Issue. Environmental Management 61, 671–686 (2018). https://doi.org/10.1007/s00267-017-0992-3

Download citation

Keywords

  • Diadromous fishes
  • River fragmentation
  • Ecosystem goods and services
  • Territory
  • Policy
  • Multidisciplinary approach