Skip to main content

Advertisement

Log in

Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The multiple scale of stream networks spatial organization reflects the hierarchical arrangement of streams habitats with increasingly levels of complexity from sub-catchments until entire hydrographic basins. Through these multiple spatial scales, local stream habitats form nested subsets of increasingly landscape scale and habitat size with varying contributions of both alpha and beta diversity for the regional diversity. Here, we aimed to test the relative importance of multiple nested hierarchical levels of spatial scales while determining alpha and beta diversity of caddisflies in regions with different levels of landscape degradation in a core Cerrado area in Brazil. We used quantitative environmental variables to test the hypothesis that landscape homogenization affects the contribution of alpha and beta diversity of caddisflies to regional diversity. We found that the contribution of alpha and beta diversity for gamma diversity varied according to landscape degradation. Sub-catchments with more intense agriculture had lower diversity at multiple levels, markedly alpha and beta diversities. We have also found that environmental predictors mainly associated with water quality, channel size, and habitat integrity (lower scores indicate stream degradation) were related to community dissimilarity at the catchment scale. For an effective management of the headwater biodiversity of caddisfly, towards the conservation of these catchments, heterogeneous streams with more pristine riparian vegetation found within the river basin need to be preserved in protected areas. Additionally, in the most degraded areas the restoration of riparian vegetation and size increase of protected areas will be needed to accomplish such effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284

    Article  Google Scholar 

  • Allan JD, Castillo MM (2007) Stream ecology: structure and function of running waters. Springer, Dordrecht, p 436

    Book  Google Scholar 

  • Anderson MJ (2001a) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson MJ (2001b) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  Google Scholar 

  • Ávila AC, Stenert C, Maltchik L (2011) Partitioning macroinvertebrate diversity across different spatial scales in Southern Brazil Coastal Wetlands. Wetlands 31:459–469

    Article  Google Scholar 

  • Baccaro FB, De Souza JLP, Franklin E, Landeiro VL, Magnusson WE (2012) Limited effects of dominant ants on assemblage species richness in three Amazon forests. Ecol Entomol 37:1–12

    Article  Google Scholar 

  • Baptista DF, Henriques-Oliveira AL, Oliveira RBS, Mugnai R, Nessimian JL, Buss DF (2013) Development of a benthic multimetric index for the Serra da Bocaina bioregion in Southeast Brazil. Braz J Biol 73:573–583

    Article  CAS  Google Scholar 

  • Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PloS One 6(3):e17976

    Article  Google Scholar 

  • Bispo PC, Oliveira LG, Cresci VL, Silva MM (2001) A pluviosidade como fator de alteração da entomofauna bentônica em córregos do Planalto Central do Brasil. Acta Limnol Bras 13:01–09

    Google Scholar 

  • Brown BL (2003) Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol Lett 6:316–325

    Article  Google Scholar 

  • Brown BL, Swan CM (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79:571–580

    Article  CAS  Google Scholar 

  • Brown BL, Swan CM, Auerbach DA, Grant EHC, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J North Am Benthol Soc 30:310–327

    Article  Google Scholar 

  • Buss DF, Baptista DF, Nessimian JL, Egler M (2004) Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518:179–188

    Article  Google Scholar 

  • Cadotte MW, Fukami T (2005) Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecol Lett 8:548–557

    Article  Google Scholar 

  • Carvalho FMV, De Marco P, Ferreira LG (2009) The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–1403

    Article  Google Scholar 

  • Chakona A, Phiri C, Day JA (2008) Potential for Trichoptera communities as biological indicators of morphological degradation in riverine systems. Hydrobiologia 621:155–167

    Article  Google Scholar 

  • Chandy S, Gibson DJ, Robertson PA (2006) Additive partitioning of diversity across hierarchical spatial scales in a forested landscape. J Appl Ecol 43:792–801

    Article  Google Scholar 

  • Clarke A, Mac Nally R, Bond N, Lake PS (2008) Macroinvertebrate diversity in headwater streams: a review. Freshw Biol 53:1707–1721

    Article  Google Scholar 

  • Clarke A, Nally RM, Bond NR, Lake PS (2010) Conserving macroinvertebrate diversity in headwater streams: the importance of knowing the relative contributions of α and β diversity. Divers Distrib 16:725–736

    Article  Google Scholar 

  • Collier KJ, Smith BJ (1998) Dispersal of adult caddisflies (Trichoptera) into forests alongside three New Zealand streams. Hydrobiologia 361:53–65

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Lin S, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21

    Article  Google Scholar 

  • Colzani E, Siqueira T, Suriano MT, Roque FO (2013) Responses of aquatic insect functional diversity to landscape changes in Atlantic. Biotropica 0:1–8

    Google Scholar 

  • Cook SC, Housley L, Back JA, King RS (2017) Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology https://doi.org/10.1002/ecy.2069

  • Costa SS, Melo AS (2007) Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia 598:131–138

    Article  Google Scholar 

  • Crist TO, Pradhan-Devare SV, Summerville KS (2006) Spatial variation in insect community and species responses to habitat loss and plant community composition. Oecologia 147:510–521

    Article  Google Scholar 

  • Crist TO, Veech JA (2006) Additive partitioning of rarefaction curves and species-area relationships: unifying alpha-, beta- and gamma-diversity with sample size and habitat area. Ecol Lett 9:923–932

    Article  Google Scholar 

  • Crist TO, Veech JA, Gering JC, Summerville KS (2003) Partitioning species diversity across landscapes and regions: a hierarchical analysis of alpha, beta, and gamma diversity. Am Nat 162:734–743

    Article  Google Scholar 

  • Cushman SA, Mcgarigal K (2002) Hierarchical, multi-scale decomposition of species-environment relationships. Landsc Ecol 17:637–646

    Article  Google Scholar 

  • Death RG, Collier KJ (2010) Measuring stream macroinvertebrate responses to gradients of vegetation cover: when is enough enough? Freshw Biol 55:1447–1464

    Article  Google Scholar 

  • Diniz-Filho JAF, Oliveira LG, Silva M (1998) Explaining the beta diversity of aquatic insects in Cerrado streams from central Brazil using multiple Matel Test. Rev Bras Biol 58:223–231

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Domínguez E, Fernández HR (2001) Guia para la determinación de los artrópodos bentónicos sudamericanos. Editora Universidad Nacional de Tucumán, Tucuman, p 251

    Google Scholar 

  • Dray S, Pélissier R, Coutenon P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogra 82:257–275

    Article  Google Scholar 

  • Erős T, Schmera D, Schick RS (2011) Network thinking in riverscape conservation–A graph-based approach. Biol Conserv 144:184–192

    Article  Google Scholar 

  • Finn DS, Bonada N, Múrria C, Hughes JM (2011) Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J North Am Benthol Soc 30:963–980

    Article  Google Scholar 

  • Flint OS, Holzenthal RW, Harrison SC (1999) Catalog of the Neotropical Caddisflies (Insecta: Trichoptera). Ohio Biological Survey, Ohio, p 239

    Google Scholar 

  • Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Oñate JJ, Pärt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21:1772–1781

    Article  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  Google Scholar 

  • Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87:2425–2432

    Article  Google Scholar 

  • Frissel CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a waterched context. Environ Manag 10(2):199–214

    Article  Google Scholar 

  • Galbraith HS, Vaughn CC, Meier CK (2007) Environmental variables interact across spatial scales to structure trichopteran assemblages in Ouachita Mountain rivers. Hydrobiologia 596:401–411

    Article  Google Scholar 

  • Gering JC, Crist TO (2002) The alpha–beta–regional relationship: providing new insights into local–regional patterns of species richness and scale dependence of diversity components. Ecol Lett 5:433–444

    Article  Google Scholar 

  • Gering JC, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv Biol 17:488–499

    Article  Google Scholar 

  • Gombeer SC, Knapen D, Bervoets L (2011) The influence of different spatial-scale variables on caddisfly assemblages in flemish lowland streams. Ecol Entomol 36:355–368

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Griffith JA, Martinko EA, Whistler JL, Price KP (2002) Interrelationships among landscapes, NDVI, and stream water quality in the U. S. central plains. Ecol Appl 12:1702–1718

    Article  Google Scholar 

  • Harden CP, Chin A, English MR, Fu R, Galvin KA, Gerlak AK, McDowell PF, McNamara DE, Peterson JM, Poff NL, Rosa EA, Solecki WD, Wohl EE (2014) Understanding human–landscape interactions in the “Anthropocene”. Environ Manag 53(1):4–13

    Article  Google Scholar 

  • Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EB (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci USA 95:14843–14847

    Article  CAS  Google Scholar 

  • Heino J, Mykrä H (2008) Control of stream insect assemblages: roles of spatial configuration and local environmental factors. Ecol Entomol 33:614–622

    Article  Google Scholar 

  • Heino J, Grönroos M, Ilmonen J, Karhu T, Niva M, Paasivirta L (2013) Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshw Sci 32:142–154

    Article  Google Scholar 

  • Heino J, Grönroos M, Soininen J, Virtanen R, Muotka T (2012) Context dependency and metacommunity structuring in boreal headwater streams. Oikos 121:537–544

    Article  Google Scholar 

  • Heino J, Melo AS, Bini LM (2015) Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw Biol 60:223–235

    Article  Google Scholar 

  • Hepp LU, Melo AS (2013) Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703:239–246

    Article  Google Scholar 

  • Hunt L, Bonetto C, Marrochi N, Scalise A, Fanelli S, Liess M, Lydy MJ, Chiu M-C, Resh VH (2017a) Species at risk (SPEAR) index indicates effects of insecticides on stream invertebrate communities in soy production regions of the Argentine Pampas. Sci Total Environ 580:699–709

    Article  CAS  Google Scholar 

  • Hunt L, Marrochi N, Bonetto C, Liess M, Buss DF, Vieira da Silva C, Chiu MC, Resh VH (2017b) Do riparian buffers protect stream invertebrate communities in south american atlantic forest agricultural areas? Environ Manag 60:1155–1170

    Article  CAS  Google Scholar 

  • Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C (2010) Partitioning diversity for conservation analyses. Divers Distrib 16:65–76

    Article  Google Scholar 

  • Juen L, De Marco P (2011) Odonate biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect Conserv Divers 4:265–274

    Article  Google Scholar 

  • Jurasinski G, Retzer V, Beierkuhnlein C (2009) Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia 159:15–26

    Article  Google Scholar 

  • Kanno Y, Russ WT, Sutherland CJ, Cook SB (2012) Prioritizing aquatic conservation areas using spatial patterns and partitioning of fish community diversity in a near-natural temperate basin. Aquat Conserv 22:799–812

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  Google Scholar 

  • Landeiro VL, Bini LM, Melo AS, Pes AMO, Magnusson WE (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw Biol 57:1554–1564

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology. Elsevier, Amsterdam, The Netherlands, p 990

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lessard J-P, Borregaard MK, Fordyce JA, Rahbek C, Weiser MD, Dunn RR, Sanders NJ (2012) Strong influence of regional species pools on continent-wide structuring of local communities. Proc R Soc Biol Sci 279:266–274

    Article  Google Scholar 

  • Ligeiro R, Melo AS, Callisto M (2010) Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshw Biol 55:424–435

    Article  Google Scholar 

  • Linke S, Pressey RL, Bailey RC, Norris RH (2007) Management options for river conservation planning: condition and conservation re-visited. Freshw Biol 52:918–938

    Article  Google Scholar 

  • Löbel S, Rydin H (2009) Dispersal and life history strategies in epiphyte metacommunities: alternative solutions to survival in patchy, dynamic landscapes. Oecologia 161:569–579

    Article  Google Scholar 

  • Lomolino MV (2004) Conservation biogeography. In: Lomolino MV, Heaney LR (ed) Frontiers of Biogeography: new directions in the geography of nature. Sinauer Associates, Sunderland, Massachusetts, pp 293–296

    Google Scholar 

  • Mackay R, Wiggins G (1979) Ecological diversity in Trichoptera. Annu Rev Entomol 24:185–208

    Article  Google Scholar 

  • McArdle B, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Merritt RW, Cummins KW (1996) An introduction to the aquatic insects of North America. Kdall Hunt Piblishing Company, Iowa, p 441

    Google Scholar 

  • Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks1. JAWRA J Am Water Resour Assoc 43:86–103

    Article  Google Scholar 

  • Minshall GW, Petersen RC, Bott TL, Cushing CE, Cummins KW, Vannote RL, Sedell JR (1992) Stream ecosystem dynamics of the Salmon River, Idaho: an 8th-order system. J North Am Benthol Soc 11:111–137

    Article  Google Scholar 

  • Morse JC (2016) Trichoptera world checklist. http://entweb.clemson.edu/database/trichopt/index.htm. Accessed 15 Dec 2016

  • Myers N, Mittermeier RA, Mittermeier CG (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  Google Scholar 

  • Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159

    Article  Google Scholar 

  • Nessimian JL, Venticinque EM, Zuanon J, Marco P, Gordo M, Fidelis L, Batista JD, Juen L (2008) Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams Hydrobiologia 614(1):117–131

    Article  Google Scholar 

  • Niyogi DK, Koren M, Arbuckle CJ, Townsend CR (2007) Stream communities along a catchment land-use gradient: subsidy-stress responses to pastoral development. Environ Manag 39:213–225

    Article  Google Scholar 

  • Olden JD, Poff NL, McKinney ML (2006) Forecasting faunal and floral homogenization associated with human population geography in North America. Biol Conserv 127(3):261–271

    Article  Google Scholar 

  • Pes AMO, Hamada N, Nessimian JL (2005) Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Rev Bras De Èntomol 181:181–204

    Article  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49:974–997

    Article  Google Scholar 

  • Petersen I, Masters Z (2004) Dispersal of adult aquatic insects in catchments of differing land use. 934–950

  • Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Syst 33:291–315

    Article  Google Scholar 

  • Roque FO, Trivinho-Strixino S (2001) Benthic macroinvertebrates in mesohabitats of different spatial dimensions in a first order stream (São Carlos - SP). Acta Limnol Bras 13:69–77

    Google Scholar 

  • Rosenberg D, Resh VH (1993) Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p 488

    Google Scholar 

  • Ruiz-García A, Márquez-Rodríguez J, Ferreras-Romero M (2012) Implications of anthropogenic disturbance factors on the Trichoptera assemblage in a Mediterranean fluvial system: are Trichoptera useful for identifying land-use alterations? Ecol Indic 14:114–123

    Article  Google Scholar 

  • Siqueira T, Giaj-Levra TL, Saito VS (2015) How does landscape modification induce biological homogenization in tropical stream metacommunities? Biotropica 47(4):509–516

    Article  Google Scholar 

  • Solar RRC, Barlow J, Ferreira J, Berenguer E, Lees AC, Thomson JR, Louzada J, Maués M, Moura NG, Oliveira VHF, Chaul JCM, Schoereder JH, Vieira ICG, MacNally R, Gardner TA (2015) How pervasive is biotic homogenization in human-modified tropical forest landscapes? Ecol Lett 18(10):1108–1118

    Article  Google Scholar 

  • Shurin JB, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159:151–159

    Article  Google Scholar 

  • Stendera SES, Johnson RK (2005) Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshw Biol 50:1360–1375

    Article  Google Scholar 

  • Tylianakis JM, Klein A-M, Lozada T, Tscharntke T (2006) Spatial scale of observation affects alpha, beta and gamma diversity of cavity-nesting bees and wasps across a tropical land-use gradient. J Biogeogr 33:1295–1304

    Article  Google Scholar 

  • Van de Meutter F, De Meester L, Stoks R (2007) Metacommunity structure of pond macroinvertebrates: effects of dispersal mode and generation time. Ecology 88:1687–1695

    Article  Google Scholar 

  • Veech JA, Crist TO (2007) PARTITION: Software for hierarchical additive partitioning of species diversity. Version 2.0. http://www.users.muohio.edu/cristto/partition.htm Accessed 28 July 2013

  • Veech JA, Summerville KS, Crist TO, Gering JC (2002) The additive partitioning of species diversity: recent revival of an old idea. Oikos 1:3–9

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Gessner MO, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 39:555–561

    Article  Google Scholar 

  • Wagner HH, Wildi O, Ewald KC (2000) Additive partitioning of plant species diversity in an agricultural mosaic landscape. 219–227

  • Wiggins GB (1977) Larvae of the North American Caddisfly Genera (Trichoptera). Editora University of Toronto, Toronto, p 157

    Google Scholar 

  • Wilson MV, Shmida A (1984) Measuring beta diversity with presence-absence data. J Ecol 72:1055–1064

    Article  Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon Int Assoc Plant Taxon (IAPT) 21:213–251

    Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P et al. (2005) Conservation biogeography: Assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Zhou T, Wu J, Peng S (2012) Assessing the effects of landscape pattern on river water quality at multiple scale: a case study of the Dongjiang River watershed, China. Ecol Indic 23:166–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for the doctoral student scholarship for the first and second authors, and to the Universidade Estadual de Goiás for the support received from the “Programa de Bolsa de Incentivo à Pesquisa” (PROBIP). We would like to thank Daniel Paiva Silva for the text improvements in previous versions of this manuscript. We thank to anonymous reviewers and the editor for their comments that helped to improve the quality of the paper. Finally, we also would like to thank our colleagues and students Maysa Farias de Almeida Araújo and Anderson Cleiton Dias for field and laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Simião-Ferreira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simião-Ferreira, J., Nogueira, D.S., Santos, A.C. et al. Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes. Environmental Management 61, 687–699 (2018). https://doi.org/10.1007/s00267-017-0989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0989-y

Keywords

Navigation