Advertisement

Environmental Management

, Volume 60, Issue 2, pp 323–339 | Cite as

Satellite Remote Sensing for Coastal Management: A Review of Successful Applications

  • Matthew J. McCarthy
  • Kaitlyn E. Colna
  • Mahmoud M. El-Mezayen
  • Abdiel E. Laureano-Rosario
  • Pablo Méndez-Lázaro
  • Daniel B. Otis
  • Gerardo Toro-Farmer
  • Maria Vega-Rodriguez
  • Frank E. Muller-Karger
Article

Abstract

Management of coastal and marine natural resources presents a number of challenges as a growing global population and a changing climate require us to find better strategies to conserve the resources on which our health, economy, and overall well-being depend. To evaluate the status and trends in changing coastal resources over larger areas, managers in government agencies and private stakeholders around the world have increasingly turned to remote sensing technologies. A surge in collaborative and innovative efforts between resource managers, academic researchers, and industry partners is becoming increasingly vital to keep pace with evolving changes of our natural resources. Synoptic capabilities of remote sensing techniques allow assessments that are impossible to do with traditional methods. Sixty years of remote sensing research have paved the way for resource management applications, but uncertainties regarding the use of this technology have hampered its use in management fields. Here we review examples of remote sensing applications in the sectors of coral reefs, wetlands, water quality, public health, and fisheries and aquaculture that have successfully contributed to management and decision-making goals.

Keywords

Coastal resources Coral reefs Wetlands Water quality Public health Fisheries 

Notes

Acknowledgements

This manuscript is a contribution to the Marine Biodiversity Observation Network. Funding for this work was provided by the National Aeronautic and Space Administration (NASA) Earth and Science Fellowship Program (grant numbers NNX12AN94H and NNX15AN60H), the National Science Foundation FG-LSAMP Bridge to the Doctorate (HRD #0929435), the National Science Foundation Partnerships for International Research (PIRE) (grant number 1243510), the Environmental Protection Agency Science To Achieve Results (grant number 835193010), NASA’s Airborne Science program for UAS Enabled Earth Science Program (grant number NNH10ZDA001NRA-UAS), NASA and the National Oceanic and Atmospheric Administration (NOAA) Integrated Ocean Observing System (IOOS) Program Office (grant number NNX14AP62A), the National Science Foundation (grant number AGS-278 1444755), the University of South Florida (USF) College of Marine Science Bridge to the Doctorate Endowed & Alfred P. Sloan Fellowships, the USF Dissertation Completion Fellowship, the Linton Tibbetts Endowed Fellowship, the Sanibel Captiva Fellowship, and the 2016 Gulf Oceanographic Charitable Trust Fellowship. This paper is a result of research funded by the National Oceanic and Atmospheric Administration’s RESTORE Act Science Program under award NA15NOS4510226 to The University of Miami.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Aguilar-Manjarrez J (1996) Development and evaluation of GIS-based models for planning and management of coastal aquaculture: A case study in Sinaloa. Dissertation, University of StirlingGoogle Scholar
  2. Alexandridis TK, Topaloglou CA, Lazaridou E, Zalidis G (2008) The performance of satellite images in mapping aquacultures. Ocean Coast Manage 51:638–644CrossRefGoogle Scholar
  3. Anyamba A, Chretien JP, Small J, Tucker CJ, Formenty PB, Richardson JH, Britch SC, Schnabel DC, Erickson RL, Linthicum KJ (2009) Prediction of a Rift Valley fever outbreak. P Natl Acad Sci USA 106:955–959CrossRefGoogle Scholar
  4. Arnold WS, White MW, Norris HA, Berrigan ME (2000) Hard clam (Mercenaria spp) aquaculture in Florida USA: geographic information system applications to lease site selection. Aquacult Eng 23:203–231. doi:101016/S0144-8609(00)00042-XCrossRefGoogle Scholar
  5. Aswani S, Mumby PJ, Baker AC, Christie P et al. (2015) Scientific frontiers in the management of coral reefs. Front Marine Sci 2(50):1–13Google Scholar
  6. Backer LC (2002) Cyanobacterial harmful algal blooms (CyanoHABs): developing a public health response. Lake Reserv Manage 18(1):20–31CrossRefGoogle Scholar
  7. Backer LC, Fleming LE, Rowan A, Cheng YS, Benson J, Pierce RH, Zaias J, Bean J, Bossart GD, Johnson D, Quimbo R, Baden DG (2003) Recreational exposure to aerosolized brevetoxins during Florida red tide events. Harmful Algae 2(1):19–28CrossRefGoogle Scholar
  8. Backer LC, Kirkpatrick B, Fleming LE, Cheng YS, Pierce R, Bean JA, Clark R, Johnson D, Wanner A, Tamer R, Zhou Y, Baden DG (2005) Occupational exposure to aerosolized brevetoxins during Florida red tide events: effects on a healthy worker population. Environ Health Persp 113(5):644–659CrossRefGoogle Scholar
  9. Baker A, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  10. Bakun A (2006) Front and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Sci Mar 70(S2):105–122CrossRefGoogle Scholar
  11. Bao J, Li X, Yu C (2015) The construction and validation of the heat vulnerability index a review. Int J Environ Res Public Health 12:7220–7234. doi:103390/ijerph120707220CrossRefGoogle Scholar
  12. Barnes BB, Hu C, Holekamp KL, Blonski S, Spiering BA, Palandro D, Lapointe B (2013a) Use of Landsat data to track historical water quality changes in Florida keys marine environments. Remote Sens Environ 140:485–496CrossRefGoogle Scholar
  13. Barnes BB, Hu C, Kovach C, Silverstein R (2015) Sediment plumes induced by the Port of Miami dredging: analysis and interpretation using Landsat and MODIS data. Remote Sens Environ 170:328–339CrossRefGoogle Scholar
  14. Barnes BB, Hu C, Schaeffer BA, Lee Z, Palandro DA, Lehrter JC (2013b) MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: a new approach to remove bottom contamination. Remote Sens Environ 134:377–391CrossRefGoogle Scholar
  15. Basly L, Wald L (2010) Remote sensing and air quality in urban areas. In: Laurini R, Tanzi T (Eds) Second International Symposium on TeleGeoProcessing, May 2000, Sophia Antipolis, France, p. 213–219Google Scholar
  16. Bechle MJ, Millet BD, Marshall JD (2013) Remote sensing of exposure to NO2: satellite versus ground-based measurement in a large urban area. Atmos Environ 69:345–353CrossRefGoogle Scholar
  17. Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marini M (2006) Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens Environ 105:54–67CrossRefGoogle Scholar
  18. Bellwood DR, Hughes TP (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292(5521):1532–1535. doi:101126/science1058635CrossRefGoogle Scholar
  19. Bierman P, Lewis M, Ostendorf B, Tanner J (2011) A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecol Indic 11:103–114CrossRefGoogle Scholar
  20. Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (Eds) Biogeochemistry of Marine Dissolved Organic Matter, Academic, San Diego, CAGoogle Scholar
  21. Boyd CE, Schmittou HR (1999) Achievement of sustainable aquaculture through environmental management. Aquacult Econ Manage 3(1):59–69CrossRefGoogle Scholar
  22. Buczak A, Koshute P, Babin ST, Feighner BH, Lewis SH (2012) A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Med Inform Decis Mak doi:101186/1472-6947-12-124Google Scholar
  23. Bukata RP (2005) Satellite Monitoring of Inland and Coastal Water Quality: Retrospection, Introspection, Future Directions. CRC Press, Boca Raton FLCrossRefGoogle Scholar
  24. Burke L, Reytar K, Spalding M Perry A (2011) Reefs at risk revisited. World Resources Institute Washington p 130Google Scholar
  25. Carrick NA, Ostendorf B (2007) Development of a spatial decision support system (DSS) for the Spencer Gulf penaid prawn fishery, South Australia. Environ Modell Softw 22:137–148CrossRefGoogle Scholar
  26. Chakalall B, Mahon R, McConney P, Nurse L, Oderson D (2007) Governance of fisheries and other living marine resources in the Wider Caribbean. Fish Res 87:92–99CrossRefGoogle Scholar
  27. Chen PY, Chen CC, Chu L, McCarl B (2015) Evaluating the economic damage of climate change on global coral reefs. Global Environ Change 30:12–20CrossRefGoogle Scholar
  28. Chen Z, Hu C, Comny RN, Muller-Karger F, Swarzenski P (2007a) Colored dissolved organic matter in Tampa Bay, Florida. Mar Chem 104(1–2):98–109CrossRefGoogle Scholar
  29. Chen Z, Hu C, Muller-Karger F (2007b) Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens Environ 109:207–220CrossRefGoogle Scholar
  30. Cho L (2005) Marine protected areas: a tool for integrated coastal management in Belize. Ocean Coast Manage 48:932–947CrossRefGoogle Scholar
  31. Chollett I, Müller-Karger FE, Heron S, Skirving W, Mumby PJ (2012) Seasonal and spatial heterogeneity of recent sea surface temperature trends in the Caribbean Sea and southeast Gulf of Mexico. Mar Pollut Bull 64:956–965CrossRefGoogle Scholar
  32. Chuang TW, Henebry GM, Kimball JS, VanRoekel-Patton DS, Hildreth MB, Wimberly MC (2012) Satellite microwave remote sensing for environmental modeling of mosquito population dynamics. Remote Sens Environ 125:147–156CrossRefGoogle Scholar
  33. Chust G, Galparsoro I, Borja A, Franco J, Uriarte A (2008) Coastal and estuarine habitat mapping using LIDAR height and intensity and multi-spectral imagery. Estuar Coast Shelf Sci 78:633–643CrossRefGoogle Scholar
  34. Cloern JE, Foster SQ, Kleckner AE (2013) Review: Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences Discussions 10:17725–17783CrossRefGoogle Scholar
  35. Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274(5295):2025–2031CrossRefGoogle Scholar
  36. Colwell RR (2004) Infectious disease and environment: cholera as a paradigm for waterborne disease. Int Microbiol 7:285–289Google Scholar
  37. Dabrowska-Zielinska K, Gruszczynska M, Lewinski S, Hoscilo A, Bojanowski J (2009) Application of remote and in situ information to the management of wetlands in Poland. J Environ Manage 90:2261–2269CrossRefGoogle Scholar
  38. Dahl T, Stedman S (2013) Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009. US Department of the Interior Fish and Wildlife Service and National Oceanic and Atmospheric Administration National Marine Fisheries Service (p 46)Google Scholar
  39. Devlin M, Bricker S, Painting S (2011) Comparison of five methods for assessing impacts of nutrient enrichment using Estuarine case studies. Biogeochemistry 106:177–205CrossRefGoogle Scholar
  40. Van Dolah FM (2000) Marine algal toxins: origins health effects and their increased occurrence. Environ Health Persp 108(1):131–141Google Scholar
  41. Dowd M (2005) A bio-physical coastal ecosystem model for assessing environmental effects of marine bivalve aquaculture. Ecol Model 183:323–346CrossRefGoogle Scholar
  42. Eakin CM, Nim CJ, Brainard RE, Aubrecht C, Elvidge C, Gledhill DK, Muller-Karger F, Mumby PJ, Skirving WJ, Strong AE, Wang M, Weeks S, Wentz F, Ziskin D (2010) Monitoring Corals from Space. Oceanography 23(4):118–133CrossRefGoogle Scholar
  43. Epstein PR, Ford TE, Colwell RR (1993) Health and climate change: marine ecosystems. Lancet 342:1216–1219CrossRefGoogle Scholar
  44. Evans RD, Murray KL, Field SN, Moore JAY, Shedrawi G, Huntley BG, Fearns P, Broomhall M, McKinna LIW, Marrable D (2012) Digitise this! A quick and easy remote sensing method to monitor the daily extent of dredge plumes. PloS One 7(12):e51668. doi:101371/journalpone0051668CrossRefGoogle Scholar
  45. Fanning L, Mahon R, McConney P (2009) Focusing on living marine resource governance: the Caribbean large marine ecosystem and adjacent areas project. Coast Manage 37:219–234CrossRefGoogle Scholar
  46. Faure V, Cheikh AI, Herve D, Cury P (2000) The importance of retention processes in upwelling areas for recruitment of Octopus Vulgaris: the example of the Arguin bank (Mauritania). Fish Oceanogr 94:343–355CrossRefGoogle Scholar
  47. Fiedler PC (1983) Satellite remote sensing of the habitat of spawning anchovy in the southern California Bight. Calif Coop Ocean Fish Invest 24:202–209Google Scholar
  48. Fleming LE, Kirkpatrick B, Backer LC, Bean JA, Wanner A, Reich A, Zaias J, Cheng YS, Pierce R, Naar J, Abraham WM, Baden DG (2007) Aerosolized red-tide toxins (brevetoxins) and asthma. Chest 131(1):187–194CrossRefGoogle Scholar
  49. Food and Agriculture Organization of the United Nations (FAO) (2015) World Food Situation FAO Rome, ItalyGoogle Scholar
  50. Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960CrossRefGoogle Scholar
  51. Garni R, Tran A, Guis H, Baldet T, Benallal K, Boubidi S, Harrat Z (2014) Remote sensing land cover changes and vector-borne diseases: Use of high spatial resolution satellite imagery to map the risk of occurrence of cutaneous leishmaniasis in Ghardaïa, Algeria. Infect Genet Evol 28:725–734CrossRefGoogle Scholar
  52. Ghioca-Robrecht DM, Johnston CA, Tulbure MG (2008) Assessing the use of multiseason Quickbird imagery for mapping invasive species in a Lake Erie coastal marsh. Wetlands 28:1028–1039CrossRefGoogle Scholar
  53. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159CrossRefGoogle Scholar
  54. Glasgow HB, Burkholder JM, Reed RE, Lewitus AJ, Kleinman JE (2004) Real-time remote monitoring of water quality: a review of current applications and advancements in sensor telemetry and computing technologies. J Exp Mar Biol Ecol 300:409–448CrossRefGoogle Scholar
  55. Goodman JA, Purkis SJ, Phinn SR (eds) (2013) Coral Reef Remote Sensing: A Guide for Mapping, Monitoring and Management. Springer, Dordrecht, p 436Google Scholar
  56. Goreau TJ, Hayes RL (1994) Coral bleaching and ocean “hot spots”. Ambio 100(23):176–180Google Scholar
  57. Goreau TJ, McClanahan T, Hayes R, Strong A (2000) Conservation of coral reefs after the 1998 global bleaching event. Conserv Biol 14(1):5–15CrossRefGoogle Scholar
  58. Green EP, Mumby PJ, Edwards AJ, Clark CD (1996) A review of remote sensing for the assessment and management of tropical coastal resources. Coast Manage 24:1–40CrossRefGoogle Scholar
  59. Habtes SY (2014) Variability in the Spatial and Temporal Patterns of Larval Scombrid Abundance in the Gulf of Mexico. Dissertation, University of South FloridaGoogle Scholar
  60. Hay SI (2011) An overview of remote sensing and geodesy for epidemiology and public health application. Adv Parasit 47:1–35Google Scholar
  61. Hedley JD, Roelfsema CM, Chollett I, Harborne AR, Heron SF, Weeks S, Skirving WJ, Strong AE, Eakin CM, Christensen TRL, Ticzon V, Bejarano S, Mumby PJ (2016) Remote sensing of coral reefs for monitoring and management: a review. Remote Sens 8(118):1–40. doi:103390/rs8020118Google Scholar
  62. Herrero J, Castañeda C (2009) Delineation and functional status monitoring in small saline wetlands of NE Spain. J Environ Manage 90:2212–2218CrossRefGoogle Scholar
  63. Heumann B (2011) Satellite remote sensing of mangrove forests: recent advances and future opportunities. Prog Phys Geog 35:87–108CrossRefGoogle Scholar
  64. Ho AJ, Grant SB, Surbeck CQ, DiGiacomo PM, Nezlin NP, Jian S (2005) Coastal water quality impacts of stormwater runoff from an urban watershed in Southern California. Environ Sci Technol 39(16):5940–5953CrossRefGoogle Scholar
  65. Hochberg EJ (2011) Remote sensing of coral reef processes. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, p 25–35CrossRefGoogle Scholar
  66. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528CrossRefGoogle Scholar
  67. Hu C, Luerssen R, Muller-Karger FE, Carder KL, Heil CA (2007) On the remote monitoring of Karenia brevis blooms of the west Florida shelf. Cont Shelf Res 28:159–176CrossRefGoogle Scholar
  68. Huq A, West PA, Small EB, Huq MI, Colwell RR (1984) Influence of water temperature salinity and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microb 48(2):420–424Google Scholar
  69. IOCCG (2009) Remote sensing in fisheries and aquaculture.In: Forget M-H, Stuart V and Platt T (ed) Reports of the International Ocean-Colour Coordinating Group 8 IOCCG, Dartmouth, CanadaGoogle Scholar
  70. Jang E, Im J, Sunghyun H, Lee S, Park Y (2016) Estimation of water quality index for coastal areas in Korea using GOCI satellite data based on machine learning approaches. Korean J Remote Sens 32(3):221–234CrossRefGoogle Scholar
  71. Janicki A, Wade D, Pribble RJ (2000) Developing and establishing a process to track the status of chlorophyll-a concentrations and light attenuation to support seagrass restoration goals in Tampa Bay. Tampa Bay Estuary Program Technical Report # 04-00Google Scholar
  72. Jia M, Zhang Y, Wang Z, Song K, Ren C (2014) Mapping the distribution of mangrove species in the core zone of Mai Po Marshes nature reserve Hong Kong using hyperspectral data and high-resolution data. Int J Appl Earth Obs 33:226–231CrossRefGoogle Scholar
  73. Kachelreiss D, Wegmann M, Gollock M, Pettorelli N (2014) The application of remote sensing for marine protected area management. Ecol Indic 36:169–177Google Scholar
  74. Kalluri S, Gilruth P, Rogers D, Szczur M (2007) Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. PLoS Pathog 3(10):1361–1371CrossRefGoogle Scholar
  75. Kiang R (2009) Malaria Modeling and Surveillance. Benchmark ReportGoogle Scholar
  76. Kleypas JA, MacManus JW, Menez L (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  77. Laurs RM, Fiedler PC, Montgomery DR (1984) Albacore Tuna Catch distributions relative to environmental features observed from satellites deep sea research Part A. Oceanogr Res Pap 31(9):1085–1099Google Scholar
  78. Le C, Hu C, English D, Cannizzaro J, Chen Z, Feng L, Boler R, Kovach C (2012) Towards a long-term chlorophyll-a data record in a turbid estuary using MODIS observations. Prog Oceanogr 109:90–103CrossRefGoogle Scholar
  79. Le C, Hu C, English D, Cannizzaro J, Kovach C (2013) Climate-driven chlorophyll-a changes in a turbid estuary: observations from satellites and implications for management. Remote Sens Environ 130:11–24CrossRefGoogle Scholar
  80. Lee KS, Lai YL, Lo S, Barkham T, Aw P, Ooi PL, Tai JC, Hibberd M, Johansson P, Khoo SP, Ng LC (2010) Dengue virus surveillance for early warning, Singapore. Emerg Inf Dis 16:847–849. doi:10.3201/eid1605.091006CrossRefGoogle Scholar
  81. Lindo-Atichati D, Bringas F, Goni G, Muhling B, Muller-Karger F, Habtes S (2012) Varying mesoscale structures influence larval fish distribution in the northern Gulf of Mexico. Mar Ecol Prog Ser 463:245–257CrossRefGoogle Scholar
  82. Liu G, Heron SF, Eakin CM, Muller-Karger FE, Vega-Rodriguez M et al. (2014) Reef-scale thermal stress monitoring of coral ecosystems: New 5-km global products from NOAA Coral Reef Watch. Remote Sens 6:11579–11606CrossRefGoogle Scholar
  83. Lobitz BM, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, Colwell R (2000) Climate and infectious diseases: use of remote sensing for detection of Vibrio cholera by indirect measurements. Proc Natl Acad Sci Biol 97(4):1438–1443CrossRefGoogle Scholar
  84. Longdill PC, Healy TR, Black KP (2008a) GIS-based models for sustainable open-coast shellfish aquaculture management area site selection. Ocean Coast Manage 51:612–624CrossRefGoogle Scholar
  85. Longdill PC, Healy TR, Black KP (2008b) Transient wind-driven coastal upwelling on a shelf with varying width and orientation. New Zeal J Mar Fresh 42:181–196CrossRefGoogle Scholar
  86. Longdill PC, Healy TR, Black KP (2008c) An integrated GIS approach for sustainable aquaculture management area site selection. Ocean Coast Manage 51:612–624CrossRefGoogle Scholar
  87. Longdill PC, Healy TR, Black KP, Mead ST (2007) Integrated sediment habitat mapping for aquaculture zoning. J Coast Res Special Issue 50:173–179.Google Scholar
  88. Lorenzoni L, Benway HM (2013) Report of Global intercomparability in a changing and ocean: An international time series methods workshop, 28–30 Nov 2012. Ocean Carbon and Biogeochemistry (OCB) Program and International Ocean Carbon Coordination Project (IOCCP) p 61.Google Scholar
  89. Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS, Carvalho MS, Barcellos C (2011) Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil. Comput Geosci 37:371–381CrossRefGoogle Scholar
  90. MacAlister C, Mahaxay M (2009) Mapping wetlands in the Lower Mekong Basin for wetland resource and conservation management using Landsat EMT images and field survey data. J Environ Manage 90:2130–2137CrossRefGoogle Scholar
  91. MacKay H, Finlayson CM, Fernandez-Prieto D, Davidson N, Pritchard D, Rebelo L-M (2009) The role of earth observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands. J Environ Manage 90:2234–2242CrossRefGoogle Scholar
  92. Magris RA, Treml EA, Pressey RL, Weeks R (2015) Integrating multiple species connectivity and habitat quality into conservation planning for coral reefs. Ecography 38:001–016CrossRefGoogle Scholar
  93. Malakar N, Atia A, Gross B, Moshary F (2014) Regional estimates of ground level aerosol using satellite remote sensing and machine learning Presented at the 94th AMS Annual Meeting Atlanta, GA, 2–6 Feb 2014Google Scholar
  94. May CL, Koseff JR, Lucas LV, Cloern JE, Schoellhamer DH (2003) Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Mar Ecol Prog Ser 254:111–128CrossRefGoogle Scholar
  95. Maynard JA, Anthony KRN, Harvell CD, Burgman MA, Beeden R, Sweatman H, Heron SF, Lamb JB, Willis BL (2011) Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef. Coral Reefs 30:485–495CrossRefGoogle Scholar
  96. McCarthy MJ, Halls J (2014) Habitat mapping and change assessment of coastal environments: an examination of WorldView-2 QuickBird and IKONOS satellite imagery and airborne LiDAR for mapping barrier island habitats. Int J GeoInf 3:297–325Google Scholar
  97. McCarthy MJ, Merton EJ, Muller-Karger FE (2015) Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery. Int J Appl Earth Obs 40:11–18CrossRefGoogle Scholar
  98. Meaden GJ, Aguilar-Manjarrez J (2013) Advances in geographic information systems and remote sensing for fisheries and aquaculture CD–ROM version FAO Fisheries and Aquaculture Technical Paper No 552, Rome FAO p 425Google Scholar
  99. Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy MJ, Peña-Orellana M (2014) Assessing climate variability effects on dengue incidence in San Juan Puerto Rico. Int J Environ Res Public Health 11(9):9409–9428CrossRefGoogle Scholar
  100. Mohan M, Kandya A (2015) Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data. Sci Total Environ doi:101016/jscitotenv201411006Google Scholar
  101. Morabito M, Crisci A, Gioli B, Gualtieri G, Toscano P, Di Stefano V, Orlandini S, Gensini GF (2015) Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities. PLoS ONE doi:101371/journalpone0127277Google Scholar
  102. Muller-Karger F, Varela R, Thunell R, Scranton M, Bohrer R, Taylor G, Capelo J, Astor Y, Tappa E, Ho TY, Walsh JJ (2001) Annual cycle of primary production in the Cariaco Basin: response to upwelling and implications for vertical export. J Geophys Res Oceans 106(C3):4527–4542CrossRefGoogle Scholar
  103. Mustapha MA, Saitoh SI (2008) Observations of sea ice interannual variations and spring bloom occurrences at the Japanese scallop farming area in the Okhotsk Sea using satellite imageries. Estuar Coast Shelf Sci 77:577–588CrossRefGoogle Scholar
  104. Nath SS, Bolte JP, Ross LG, Aguilar-Manjarrez J (2000) Applications of geographical information systems (GIS) for spatial decision support in aquaculture. Aquacult Eng 23:233–278. doi:101016/S0144-8609(00)00051-0CrossRefGoogle Scholar
  105. Noren F, Haamer J, Lindahl O (1999) Changes in the plankton community passing a Mytilus edulis mussel bed. Mar Ecol Prog Ser 191:187–194CrossRefGoogle Scholar
  106. Ortiz-Lozano L, Espejel I, Granados-Barba A, Arceo P (2007) A functional and integrated approach of methods for the management of protected marine areas in the Mexican coastal zone. Ocean Coast Manage 50:379–391CrossRefGoogle Scholar
  107. Ozesmi SL, Bauer ME (2002) Satellite remote sensing of Wetlands. Wetl Ecol Manag 10:381–402CrossRefGoogle Scholar
  108. Paciorek CJ, Liu Y (2009) Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter. Environ Health Persp 117:6CrossRefGoogle Scholar
  109. Pascual M, Rodó X, Ellner SP, Colwell RR, Bouma MJ (2000) Cholera dynamics and El Niño-Southern Oscillation. Science 289:1766–1769CrossRefGoogle Scholar
  110. Pereira HM, Leadley PW, Proenca V, Alkemade R, Sharlemann JPW, Fernandez-Manjarres JF, Araujo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guenette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 300:1496–1501Google Scholar
  111. Pettorelli N, Chauvenet ALM, Duffy JP, Cornforth WA, Meillere A, Baillie JEM (2012) Tracking the effect of climate change on ecosystem function using protected areas: Africa as a case study. Ecol Indic 20:269–276Google Scholar
  112. Pettorelli N, Laurance WF, O'Brien TG, Wegmann M, Nagendra H, Turner W (2014) Satellite remote sensing for applied ecologists: opportunities and challenges. J Appl Ecol 51:839–848Google Scholar
  113. Pitois S, Jackson MH, Wood BJB (2000) Problems associated with the presence of cyanobacteria in recreational and drinking waters. Int J Environ Heal Res 10:203–218CrossRefGoogle Scholar
  114. Pollock FJ, Lamb JB, Field SN, Heron SF, Schaffelke B, Shedrawi G, Bourne DG, Willis BL (2014) Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PloS One doi:101371/journalpone0102498Google Scholar
  115. Quansah JE, Rochon GL, Quagrainie KK, Amisah S, Muchiri M, Ngugi C (2007) Remote Sensing Applications for Sustainable Aquaculture in Africa. IEEE International geoscience and remote sensing symposium 1255–1259Google Scholar
  116. Raabe E, Roy L, McIvor C (2012) Tampa Bay coastal wetlands: nineteenth to twentieth century tidal marsh-to-mangrove conversion. Estuar Coast 35:1145–1162CrossRefGoogle Scholar
  117. Radiarta IN, Saitoh SI (2008) Satellite-derived measurements of spatial and temporal chlorophyll-a variability in Funka Bay southwestern Hokkaido, Japan. Estuar Coast Shelf Sci doi:101016/jecss200804017Google Scholar
  118. Radiarta IN, Saitoh SI (2009) Biophysical models for Japanese scallop Mizuhopecten yessoensis aquaculture site selection in Funka Bay Hokkaido Japan using remotely sensed data and geographic information system. Aquac Int doi:101007/s10499-008-9212-8Google Scholar
  119. Randolph K, Wilson J, Tedesco L, Li L, Pascual DL, Soyeux E (2008) Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments chlorophyll-a and phycocyanin. Remote Sens Environ 112:4009–4019CrossRefGoogle Scholar
  120. Rinner C, Hussain M (2011) Toronto’s urban heat island—exploring the relationship between land use and surface temperature. Remote Sens doi:103390/rs3061251Google Scholar
  121. Ritchie JC, Zimba PV, Everitt JH (2003) Remote sensing techniques to assess water quality. Photogramm Eng Rem S 69(6):695–704CrossRefGoogle Scholar
  122. De La Rocque S, Michel V, Plazanet D, Pin R (2004) Remote sensing and epidemiology: examples of applications for two vector-borne diseases. Comp Immunol Microb 27:331–341CrossRefGoogle Scholar
  123. Rodó X, Pascual M, Doblas-Reyes FJ, Gerhunov A, Stone DA, Giorgi F, Hudson PJ, Kinter J, Rodríguez-Arias MA, Dtenseth NC, Alonso A, García-Serrano J, Dobson AP (2013) Climate change and infectious diseases: can we meet the need for better prediction? Clim Change 118:625–640CrossRefGoogle Scholar
  124. Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA (2001) Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents. Environ Health Persp 109(2):211–220CrossRefGoogle Scholar
  125. Rueda-Roa D (2012) On the spatial and temporal variability of upwelling in the southern Caribbean Sea and its influence on the ecology of phytoplankton and of the Spanish sardine (Sardinella aurita). Dissertation, University of South FloridaGoogle Scholar
  126. Sale PF, Agardy T, Ainsworth CH, Feist BE, Bell JD, Christie P, Hoegh-Guldberg O, Mumby PJ, Feary DA, Saunders MI, Daw TM, Foale SJ, Levin PS, Lindeman KC, Lorenzen K, Pomeroy RS, Allison EH, Bradbury RH, Corrin J, Edwards AJ, Obura DO, Sadovy de Mitcheson YJ, Samoilys MA, Sheppard CRC (2014) Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar Pollut Bull 85:8–23Google Scholar
  127. Santos A, Miguel P (2000) Fisheries Oceanography using satellite and airborne remote sensing methods: a review. Fish Res 49:1–20CrossRefGoogle Scholar
  128. Schaeffer BA, Hagy JD, Conmy RN, Lehrter JC, Stumpf RP (2012) An approach to developing numeric water quality criteria for coastal waters using the SeaWiFS satellite data record. Environ Sci Technol 46:916–922CrossRefGoogle Scholar
  129. Schaeffer BA, Schaeffer KG, Keith D, Lunetta RS, Conmy R, Gould RW (2013) Barriers to adopting satellite remote sensing for water quality management. Int J Remote Sens 34(21):7534–7544CrossRefGoogle Scholar
  130. Shamir E, Georgakakos PK (2014) MODIS Land Surface Temperature as an index of surface air temperature for operational snowpack estimation. Remote Sens Environ doi:org/101016/jrse201406001Google Scholar
  131. Sherman K, O’Reilly J, Belkin IM, Melrose C, Friedland KD (2011) The application of satellite remote sensing for assessing productivity in relation to fisheries yields of the world’s large marine ecosystems. ICSE J Mar Sci 68:667–676CrossRefGoogle Scholar
  132. Small A, Adey W, Spoon D (1998) Are current estimates of coral reef biodiversity too low? The view through the window of a microcosm. Atoll Res Bull 458:1–20CrossRefGoogle Scholar
  133. Somerfield PJ, Jaap WC, Clarke KR, Callahan M, Hackett K, Porter J, Lybolt M, Tsokos C, Yanev G (2008) Changes in coral reef communities among the Florida Keys 1996–2003. Coral Reefs 27:951–965CrossRefGoogle Scholar
  134. Soto Ramos I, Muller-Karger FE, Hu C, Wolny J (2017) Characterization of Karenia brevis blooms on the West Florida Shelf using ocean color satellite imagery: Implications for bloom maintenance and evolution. J Appl Remote Sens doi:10.1117/1.JRS.11.012002Google Scholar
  135. Soto Ramos IM, Muller-Karger F, Hallock P, Hu C (2011) Sea surface temperature variability in the Florida Keys and its relationship to coral cover. J Mar Biol doi:101155/2011/981723Google Scholar
  136. Speelman EC, Checkley W, Gilman RH, Patz J, Calderon M, Manga S (2000) Cholera incidence and El Niño-related higher ambient temperature. Jama-J Am Med Assoc 283(23):3072–3074Google Scholar
  137. Steyn H (2010) An overview of small satellite activities in South Africa 1st Nanosat Symposium 11 June 2010Google Scholar
  138. Stuart V, Platt T, Sathyendranath S (2011) The future of fisheries science in management: a remote-sensing perspective. ICSE J Mar Sci 68:644–650CrossRefGoogle Scholar
  139. Stumpf RP, Culver ME, Tester PA, Tomlinson M, Kirkpatrick GJ, Pederson BA, Truby E, Ransibrahmanakul V, Soracco M (2003) Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae 2:147–160CrossRefGoogle Scholar
  140. Thomas Y, Mazurié J, Pouvreau S, Bacher C, Gohin F, Struski C Le Mao P (2006) Modelling the growth of Mytilus edulis according to farming practices and environmental parameters Application to 2003–2004 data in the bay of Mont Saint-Michel IFREMER Report RINT/LERMPL/06–16 (www.faoorg/fishery/gisfish/id/4373)Google Scholar
  141. Thompson A, Schroeder T, Brando VE, Schaffelke B (2014) Coral community responses to declining water quality: Whitsunday islands great barrier Reef Australia. Coral Reefs 33(4):923–938CrossRefGoogle Scholar
  142. Thomson MC, Mason SJ, Phindela T, Connor SJ (2005) Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg 73:214–221Google Scholar
  143. Turner M, Gannon R (2014) Values of Wetlands. North Carolina State University http://wwwwaterncsuedu/watershedss/info/wetlands/valueshtml Accessed 21 Apr 2014Google Scholar
  144. Vega-Rodriguez M, Muller-Karger FE, Hallock P, Quiles-Perez GA, Eakin CM, Colella M, Jones DL, Li J, Soto I, Guild L, Lynds S, Ruzicka R (2015) Influence of water-temperature variability on stony coral diversity of Florida Keys patch reefs. Mar Ecol Prog Ser 528:173–186CrossRefGoogle Scholar
  145. Vincenzi S, Caramori G, Rossi R, De Leoa GA (2006) GIS-based habitat suitability model for commercial yield estimation of Tapes philippinarum in a Mediterranean coastal lagoon (Sacca di Goro Italy). Ecol Model 193:90–104CrossRefGoogle Scholar
  146. Walter C (2015) “BleachWatch Current Conditions Report” Mote Marine Laboratory and Florida Keys National Marine Sanctuary 2015 Accessed Sep 11 2015Google Scholar
  147. Wang S, Fang L, Zhang X, Wang W (2015) Retrieval of aerosol properties for fine/coarse mode aerosol mixtures over Beijing from PARASOL measurements. Remote Sens doi:103390/rs70709311Google Scholar
  148. White-Newsome JL Brines SJ, Brown DG, Dvonch T, Gronlund CJ, Zhang K, Oswald EM, O’Neill MS (2013) Validating satellite-derived land surface temperature with in Situ measurements: a public health perspective. Environ Health Persp doi: org/101289/ehp1206176Google Scholar
  149. Wigbels L (2011) Using Air Observation Data to Improve Health in the United States: Accomplishments and future challenges Report to Center for Strategic and International Studies ISBN: 978-0-89206-668-1Google Scholar
  150. Wirt KE, Hallock P, Palandro D, Semon Lunz K (2015) Potential habitat of Acropora spp on reef of Florida Puerto Rico and the US Virgin Islands. Global Ecol Conservation 2:242–255CrossRefGoogle Scholar
  151. Wofsy SC (1983) A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnol Oceanogr 28:1144–1155CrossRefGoogle Scholar
  152. Wolf T, McGregor G (2013) The development of a heat wave vulnerability index for London, United Kingdom. Weather Clim Extrem 1:59–68CrossRefGoogle Scholar
  153. World Health Organization (2001) A Framework for field research in Africa Malaria early warning systems. WHO/CDS/RBM/2001.32Google Scholar
  154. Xu Z, Liu Y, Ma Z, Li S, Hu W, Tong S (2014) Impact of temperature on childhood pneumonia estimated from satellite remote sensing. Environ Res 132:334–341CrossRefGoogle Scholar
  155. Yan X, Shi W, Zhao W, Luo N (2015) Mapping dustfall distribution in urban areas using remote sensing and ground spectral data. Sci Total Environ 506–507:604–612CrossRefGoogle Scholar
  156. Young SG, Tullis JA, Jackson C (2013) A remote sensing and GIS-assisted landscape epidemiology approach to West Nile virus. Appl Geogr doi:org/101016/japgeog201309022Google Scholar
  157. Zhang T, Yang X, Hu S, Su F (2013) Extraction of coastline in Aquaculture coast from multispectral remote sensing images: object-based region growing integrating edge detection. Remote Sens doi: 103390/rs5094470Google Scholar
  158. Zhao J, Hu C, Lapointe B, Melo N, Johns EM, Smith RH (2013) Satellite-observed Black Water events off Southwest Florida: implications for Coral Reef health in the Florida Keys National Marine Sanctuary. Remote Sens 5(1):415–431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Matthew J. McCarthy
    • 1
  • Kaitlyn E. Colna
    • 1
  • Mahmoud M. El-Mezayen
    • 1
    • 2
  • Abdiel E. Laureano-Rosario
    • 1
  • Pablo Méndez-Lázaro
    • 3
  • Daniel B. Otis
    • 1
  • Gerardo Toro-Farmer
    • 1
  • Maria Vega-Rodriguez
    • 1
  • Frank E. Muller-Karger
    • 1
  1. 1.Institute for Marine Remote Sensing, College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  2. 2.Aquaculture Department, National Institute of Oceanography and Fisheries (NIOF)AlexandriaEgypt
  3. 3.Environmental Health Department, Graduate School of Public HealthUniversity of Puerto Rico, Medical Sciences CampusSan JuanUSA

Personalised recommendations