Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes


In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14



boiling water reactor


carbon capture storage


circulating fluidized bed gasifier


compressed natural gas


downdraft gasifier


greenhouse gas


higher heating value


intergovernmental panel on climate change


life cycle analysis


liquefied petroleum gas


proton exchange membrane

PV :



pressurized water reactor


standard deviation


steam methane reforming


The Uniform System for the Evaluation of Substances


underground coal gasification


  1. Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 40(11):1449–1473

    CAS  Article  Google Scholar 

  2. Anderson K, Bows A, Mander S (2008) From long-term targets to cumulative emission pathways: reframing UK climate policy. Energy Policy 36(10):3714–3722

    Article  Google Scholar 

  3. Baptista PC, Silva CM, Peças Lopes JA, Soares FJ, Almeida PR (2013) Evaluation of the benefits of the introduction of electricity powered vehicles in an island. Energy Convers Manage 76:541–553

    Article  Google Scholar 

  4. Consultants P (2016) SimaPro Life Cycle Analysis Database version 7.3 (software)

  5. Environment Canada (2013) Canada’s emissions trends. Government of Canada, Ottawa

    Google Scholar 

  6. Gilbert P, Thornley P (2010) Energy and carbon balance of ammonia production from biomass gasification. Poster at Bio-Ten Conference, Birmingham.

  7. Granovskii M, Dincer I, Rosen MA (2006) Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int J Hydrogen Energy 31(3):337–352

    CAS  Article  Google Scholar 

  8. Hacatoglu K, Rosen MA, Dincer I (2012) Comparative life cycle assessment of hydrogen and other selected fuels. Int J Hydrogen Energy 37(13):9933–9940

    CAS  Article  Google Scholar 

  9. Hasler K, Bröring S, Omta SWF, Olfs HW (2015) Life cycle assessment (LCA) of different fertilizer product types. Eur J Agron 69:41–51

    CAS  Article  Google Scholar 

  10. Hinnemann B, Nørskov JK (2006) Catalysis by Enzymes: the biological ammonia synthesis. Top Catal 37(1):55–70

    CAS  Article  Google Scholar 

  11. Hogerwaard, J (2014) Comparative study of ammonia-based clean rail transportation systems for Greater Toronto area, Master’s Thesis, University of Ontario Institute of Technology

  12. Iki N, Kurata O, Matsunuma T, Inoue T, Suzuki M, Tsujimura T, et al. (eds) (2015) Micro Gas Turbine Firing Kerosene and Ammonia. ASME Turbo Expo 2015: Turbine Technical Conference and Exposition; 2015: American Society of Mechanical Engineers

  13. Industrial Efficiency Technology Database (IETD) (2015) The Institute for Industrial Productivity (IIP), Accessed Oct 2015

  14. International Energy Agency (IEA) (2012) Energy Technology Perspectives 2012, Pathways to a Clean Energy System, Accessed Oct 2015

  15. International Organization for Standardization (ISO) ISO 14044 (2006) Environmental Management—Life Cycle Assessment e Requirements and Guidelines

  16. Johns WR, Kokossis A, Thompson F (2008) A flowsheeting approach to integrated life cycle analysis. Chem Eng Process 47(4):557–564

    CAS  Article  Google Scholar 

  17. Kahrl F, Li Y, Su Y, Tennigkeit T, Wilkes A, Xu J (2010) Greenhouse gas emissions from nitrogen fertilizer use in China. Environ Sci Policy 13(8):688–694

    CAS  Article  Google Scholar 

  18. Kalinci Y, Hepbasli A, Dincer I (2012) Life cycle assessment of hydrogen production from biomass gasification systems. Int J Hydrogen Energy 37(19):14026–14039

    CAS  Article  Google Scholar 

  19. Kirkinen J, Palosuo T, Holmgren K, Savolainen I (2008) Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment. Environ Manage 42(3):458–469

    Article  Google Scholar 

  20. Kirova-Yordanova Z (2004) Exergy analysis of industrial ammonia synthesis. Energy 29(12–15):2373–2384

    CAS  Article  Google Scholar 

  21. Kool A, Marinussen M, Blonk H (2012) LCI data for the calculation tool Feedprint for greenhouse gas emissions of feed production and utilization. GHG Emissions of N, P and K fertilizer production Gravin Beatrixstraat 34:2805

    Google Scholar 

  22. Kordali V, Kyriacou G, Lambrou C (2000) Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun 17:1673–1674

    Article  Google Scholar 

  23. Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification—A life cycle assessment approach. Chem Eng Process 47(8):1261–1268

    Article  Google Scholar 

  24. Koroneos C, Dompros A, Roumbas G, Moussiopoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energy 29(14):1443–1450

    CAS  Article  Google Scholar 

  25. Kroch E (1945) Ammonia-a fuel for motorbuses J Inst Petrol 31:213–223

  26. Lan R, Irvine JTS, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep 3:1145

    Article  Google Scholar 

  27. Li J, Huang H, Yuan H, Zeng T, Yagami M, Kobayashi N (2014) Modelling of ammonia combustion characteristics at preheating combustion: NO formation analysis. Int J Glob Warm 10:230.

  28. Li F-F, Licht S (2014) Advances in Understanding the Mechanism and Improved Stability of the Synthesis of Ammonia from Air and Water in Hydroxide Suspensions of Nanoscale Fe2O3. Inorg Chem 53(19):10042–10044

    CAS  Article  Google Scholar 

  29. Licht S, Cui B, Wang B, Li F-F, Lau J, Liu S (2014) Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345(6197):637–640

    CAS  Article  Google Scholar 

  30. Makhlouf A, Serradj T, Cheniti H (2015) Life cycle impact assessment of ammonia production in Algeria: A comparison with previous studies. Environ Impact Assess Rev 50:35–41

    Article  Google Scholar 

  31. May S El, Boukholda I, Bellagi A (2011) Energetic and exergetic analysis of a commercial ammonia water absorption chiller. Int J Exergy 8:33

  32. Miller AR (2006) Ammonia fuel for rail transportation, vehicle projects LLC, 2006 Annual NH3 Fuel Conference, OCTOBER 9–10, 2006 Denver West Marriott, Golden, CO

  33. Paschkewitz TM (2012) Ammonia production at ambient temperature and pressure: an electrochemical and biological approach. PhD (Doctor of Philosophy) thesis. University of Iowa

  34. Pehnt M (2008) Environmental impacts of distributed energy systems—The case of micro cogeneration. Environ Sci Policy 11(1):25–37

    CAS  Article  Google Scholar 

  35. Rafaschieri A, Rapaccini M, Manfrida G (1999) Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels. Energy Convers Manage 40(14):1477–1493

    CAS  Article  Google Scholar 

  36. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30(13):2487–2504

    CAS  Article  Google Scholar 

  37. Reiter AJ, Kong S-C (2011) Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 90(1):87–97

    CAS  Article  Google Scholar 

  38. Rose L, Hussain M, Ahmed S, Malek K, Costanzo R, Kjeang E (2013) A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city. Energy Policy 52:453–461

    CAS  Article  Google Scholar 

  39. Ryu K, Zacharakis-Jutz GE, Kong S-C (2014) Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation. Int J Hydrogen Energy 39(5):2390–2398

    CAS  Article  Google Scholar 

  40. Siddiq S, Khushnood S, Koreshi ZU, Shah MT, Qureshi AH (2013) Optimal Energy Recovery from Ammonia Synthesis in a Solar Thermal Power Plant. Arab J Sci Eng 38:2569–2577

  41. Skodra A, Stoukides M (2009) Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ionics 180(23-25):1332–1336

    CAS  Article  Google Scholar 

  42. Verma A, Kumar A (2015) Life cycle assessment of hydrogen production from underground coal gasification. Appl Energy 147(0):556–568

    CAS  Google Scholar 

  43. Zamfirescu C, Dincer I (2008) Using ammonia as a sustainable fuel. J Power Sources 185(1):459–465

    CAS  Article  Google Scholar 

  44. Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90(5):729–737

    CAS  Article  Google Scholar 

Download references


We acknowledge the support provided by the Mitacs (The Mathematics of Information Technology and Complex Systems) Accelerate.

Author information



Corresponding author

Correspondence to Yusuf Bicer.

Ethics declarations

Conflictof interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bicer, Y., Dincer, I., Vezina, G. et al. Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes. Environmental Management 59, 842–855 (2017).

Download citation


  • Ammonia
  • Fuel
  • Hydrogen
  • Life cycle assessment
  • Environmental effect
  • Conventional