Environmental Management

, Volume 59, Issue 5, pp 856–869 | Cite as

Pollution Assessment of the Biobío River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach

  • Álvaro AlonsoEmail author
  • Ricardo Figueroa
  • Pilar Castro-Díez


The water demand for human activities is rapidly increasing in developing countries. Under these circumstances, preserving aquatic ecosystems should be a priority which requires the development of quality criteria. In this study we perform a preliminary prioritization of the risky substances based on reported ecotoxicological studies and guidelines for the Biobío watershed (Central Chile). Our specific aims are (1) reviewing the scientific information on the aquatic pollution of this watershed, (2) determining the presence and concentration of potential toxic substances in water, sediment and effluents, (3) searching for quality criteria developed by other countries for the selected substances and (4) prioritizing the most risky substances by means of deterministic ecotoxicological risk assessment. We found that paper and mill industries were the main sources of point pollution, while forestry and agriculture were mostly responsible for non-point pollution. The most risky organic substances in the water column were pentachlorophenol and heptachlor, while the most relevant inorganic ones were aluminum, copper, unionized ammonia and mercury. The most risky organic and inorganic substances in the sediment were phenanthrene and mercury, respectively. Our review highlights that an important effort has been done to monitor pollution in the Biobío watershed. However there are emerging pollutants and banned compounds—especially in sediments—that require to be monitored. We suggest that site-specific water quality criteria and sediment quality criteria should be developed for the Biobío watershed, considering the toxicity of mixtures of chemicals to endemic species, and the high natural background level of aluminum in the Biobío.


Pollution River Water quality criteria Ecotoxicology Chile Risk assessment 



Funds for this research came from the FONDAP N° 151300 project (CRHIAM), CONICYT Chile, the University of Alcalá (research project CCG2013/EXP-054) and the project CGL2015-65346-R of the Ministerio de Economía y Competitividad of Spain. Dr. Álvaro Alonso was supported by a grant of Becas Santander España to stay at EULA (Chile). Dr. Pilar Castro-Díez acknowledges CONICYT (Ministry of Education, Chile Government) for granting her stay at Concepción University (Concurso de atracción de Capital Humano Extranjero-MEC program). Dr. Ricardo Figueroa was supported by a grant Giner de los Ríos of the University of Alcalá (Spain) to stay at the Department of Life Sciences.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


  1. Ali M, Sreekrishnan T (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Sci 5:175–196Google Scholar
  2. Allen-Burton G (2002) Sediment quality criteria in use around the world. Limnology 3:65–75CrossRefGoogle Scholar
  3. ANZECC/ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and resource Management council of Australia and New ZealandGoogle Scholar
  4. Barra R, Popp P, Quiroz R, Bauer C, Cid H, von Tumpling W (2005) Persistent toxic substances in soils and waters along an altitudinal gradient in the Laja River Basin, Central Southern Chile. Chemosphere 58:905–915CrossRefGoogle Scholar
  5. Barra R, Sanchez-Hernandez J, Orrego R, Parra O, Gavilan J (2001) Bioavailability of PAHs in the Biobio River (Chile): MFO activity and biliary fluorescence in juvenile Oncorhynchus mykiss. Chemosphere 45:439–444CrossRefGoogle Scholar
  6. Barra R, Quiroz R, Saez K, Araneda A, Urrutia R, Popp P (2009) Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south central Chile. Environ Chem Lett 7:133–139CrossRefGoogle Scholar
  7. Besse J, Kausch-Barreto C, Garric J (2008) Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: application to the French situation and preliminary prioritization. Hum Ecol Risk Assess 14:665–695CrossRefGoogle Scholar
  8. Beyene A, Legesse W, Triest L, Kloos H (2009) Urban impact on ecological integrity of nearby rivers in developing countries: the Borkena River in highland Ethiopia. Environ Monit Assess 153:461–476CrossRefGoogle Scholar
  9. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849CrossRefGoogle Scholar
  10. CCME, Canadian Council of Ministers of the Environment (2003) Canadian water quality guidelines for the protection of aquatic life: Guidance on the Site-Specific Application of Water Quality Guidelines in Canada: Procedures for Deriving Numerical Water Quality Objectives.Google Scholar
  11. Chamorro S, Hernández V, Matamoros V, Domínguez C, Becerra J, Vidal G, Pina B, Bayona JM (2013) Chemical characterization of organic microcontaminant sources and biological effects in riverine sediments impacted by urban sewage and pulp mill discharges. Chemosphere 90:611–619CrossRefGoogle Scholar
  12. Chiang G, Munkittrick KR, Orrego R, Barra R (2010) Monitoring of the environmental effects of pulp mill discharges in chilean rivers: lessons learned and challenges. Water Qual Res J Can 45:111–122Google Scholar
  13. CIREN (2010) Determinación de la erosión actual y potencias de los suelos de Chile: Región del Biobío. Centro de Información de Recursos Naturales, Ministerio de Agricultura e Innova, Corfo, Chile, p 51Google Scholar
  14. CONAMA (2004) Guía CONAMA para el establecimiento de las normas secundarias de calidad ambiental para aguas continentales superficiales y marinas. CONAMA, Santiago de ChileGoogle Scholar
  15. Cooman K, Debels P, Gajardo M, Urrutia R, Barra R (2005) Use of Daphnia spp. for the ecotoxicological assessment of water quality in an agricultural watershed in south-central Chile. Arch Environ Contam Toxicol 48:191–200CrossRefGoogle Scholar
  16. Dai G, Huang J, Chen W, Wang B, Yu G, Deng S (2014) Major pharmaceuticals and personal care products (PPCPs) in wastewater treatment plant and receiving water in Beijing, China, and associated ecological risks. Bull Environ Contam Toxicol 92:655–661CrossRefGoogle Scholar
  17. de Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manage 97:502–511CrossRefGoogle Scholar
  18. de Morals P, Stoichev T, Basto MCP, Ramos V, Vasconcelos VM, Vasconcelos MTSD (2014) Pentachlorophenol toxicity to a mixture of Microcystis aeruginosa and Chlorella vulgaris cultures. Aquat Toxicol 150:159–164CrossRefGoogle Scholar
  19. Di Toro DM, McGrath JA (2000) Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II. Mixtures and sediments. Environ Toxicol Chem 19:1971–1982CrossRefGoogle Scholar
  20. DGA, Dirección General de Aguas (2004) Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivos de calidad: Cuenca del río Biobío. Ministerio de Obras Públicas, Gobierno de ChileGoogle Scholar
  21. D.S. Nº 9/ (2015) Establece Normas Secundarias de Calidad Ambiental para la Protección de las Aguas Continentales Superficiales de la Cuenca del Río Biobío. Ministerio de Medio Ambiente, Gobierno de Chile, p 8Google Scholar
  22. European Union (2011) Common Implementation Strategy for the Water Framework Directive (2000/60/EC): Technical Guidance Deriving Environmental Quality Standards. 27Google Scholar
  23. Figueroa R, Bonada N, Guevara M, Pedreros P, Correa-Araneda F, Diaz ME, Ruiz VH (2013) Freshwater biodiversity and conservation in mediterranean climate streams of Chile. Hydrobiologia 719:269–289CrossRefGoogle Scholar
  24. Gaete H, Larrain A, Bay-Schmith E, Baeza J, Rodriguez J (2000) Ecotoxicological assessment of two pulp mill effluent, Biobio river basin, Chile. Bull Environ Contam Toxicol 65:183–189CrossRefGoogle Scholar
  25. Goudie A (2005) The human impact on the natural environment: past, present, and future, 6th edn. Wiley-Blackwell, OxfordGoogle Scholar
  26. Grantham TE, Figueroa R, Prat N (2013) Water management in mediterranean river basins: a comparison of management frameworks, physical impacts, and ecological responses. Hydrobiologia 719:451–482CrossRefGoogle Scholar
  27. Habit E, Belk MC, Tuckfield RC, Parra O (2006a) Response of the fish community to human-induced changes in the Biobio River in Chile. Freshwat Biol 51:1–11CrossRefGoogle Scholar
  28. Habit E, Dyer B, Vila I (2006b) Estado de conocimiento de los peces dulceacuícolas de Chile. Gayana (Concepción) 70:100–113CrossRefGoogle Scholar
  29. Hernández V, Eberlin MN, Chamorro S, Becerra J, Silva M (2013) Steroidal metabolites in chilean river sediments influenced by pulp mill effluents. J Chilean Chem Soc 58:2035–2037CrossRefGoogle Scholar
  30. Hoffman DJ, Rattner BA, Burton GA, Cairns JJ (2003) Handbook of Ecotoxicology, 2nd edn. Lewis Publishers, Boca Raton, FloridaGoogle Scholar
  31. Inzunza B, Orrego R, Penalosa M, Gavilan JF, Barra R (2006) Analysis of CYP4501A1, PAHs metabolites in bile, and genotoxic damage in Oncorhynchus mykiss exposed to Biobio River sediments, Central Chile. Ecotoxicol Environ Saf 65:242–251CrossRefGoogle Scholar
  32. Iroume A, Gayoso I, Infante L (1989) Erosión hídrica y alteración del sitio en cosecha a tala rasa. Rev Ecol Biol Sol 26:171–180Google Scholar
  33. Iroume A, Gayoso J, Hernández M (1994) Características de cárcavas en las regiones VIII y IX de Chile. Bosque 15:65–75CrossRefGoogle Scholar
  34. Jin X, Wang Y, Giesy JP, Richardson KL, Wang Z (2014) Development of aquatic life criteria in China: viewpoint on the challenge. Environ Sci Pollut Res 21:61–66CrossRefGoogle Scholar
  35. Karrasch B, Parra O, Cid H, Mehrens M, Pacheco P, Urrutia R, Valdovinos C, Zaror C (2006) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Biobio River, Chile. Sci Total Environ 359:194–208CrossRefGoogle Scholar
  36. Kwon J, Rodriguez JM (2014) Occurrence and removal of selected pharmaceuticals and personal care products in three wastewater-treatment plants. Arch Environ Contam Toxicol 66:538–548CrossRefGoogle Scholar
  37. Liu W, Wang Z, Wen X, Tang H (1999) The application of preliminary sediment quality criteria to metal contamination in the Le An River. Environ Pollut 105:355–366CrossRefGoogle Scholar
  38. MacDonald D, Ingersoll C, Berger T (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31CrossRefGoogle Scholar
  39. Mohiuddin KM, Ogawa Y, Zakir HM, Otomo K, Shikazono N (2011) Heavy metals contamination in water and sediments of polluted urban rivers in developing countries. Int J Environ Sci Technol 8:723–736CrossRefGoogle Scholar
  40. Montes P, Peredo H, Lanfranco D, Ide S, Dolz H (2001) Una revisión de los productos alternativos al pentaclorofenato de sodio y bromuro de metilo utilizados en el sector forestal. Bosque 22:85–93CrossRefGoogle Scholar
  41. Muhamad MHZ, Abdullah SRS, Mohamad AB, Rahman RA, Kadhum AAH (2012) Effect of hydraulic retention time (HRT) on pentachlorophenol (PCP) and COD removal in a pilot GAC-SBBR system for the post-treatment of recycled paper mill wastewater. Desalin Water Treat 48:50–59CrossRefGoogle Scholar
  42. Myers N, Mittermeier R, Mittermeier C, Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  43. Nauges C, Whittington D (2010) Estimation of water demand in developing countries: an overview. World Bank Res Observer 25:263–294CrossRefGoogle Scholar
  44. Norris B, Quevedo L (1996) Adverse effects of polluted continental water bodies in Chile on frog adrenergic synapse. Bull Environ Contam Toxicol 57:640–647CrossRefGoogle Scholar
  45. Orrego R, Burgos A, Moraga-Cid G, Inzunza B, Gonzalez M, Valenzuela A, Barra R, Gavilan JE (2006) Effects of pulp and paper mill discharges on caged rainbow trout (Oncorhynchus mykiss): Biomarker responses along a pollution gradient in the Biobio River, Chile. Environ Toxicol Chem 25:2280–2287CrossRefGoogle Scholar
  46. Orrego R, Guchardi J, Hernandez V, Krause R, Roti L, Armour J, Ganeshakumar M, Holdway D (2009) Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout. Environ Toxicol Chem 28:181–188CrossRefGoogle Scholar
  47. O’Ryan R, Diaz M (2008) The use of probabilistic analysis to improve decision-making in environmental regulation in a developing context: the case of arsenic regulation in Chile. Hum Ecol Risk Assess 14:623–640CrossRefGoogle Scholar
  48. Parra O, Figueroa R, Valdovinos C, Habit E, Elisa-Díaz M (2013) Programa de monitoreo de la calidad del agua del sistema río biobío 1994-2012: Aplicación del anteproyecto de Norma Secundaria De La Calidad Ambiental (NSCA) del río biobío. Universidad de Concepción, ChileGoogle Scholar
  49. Parra O, Chuecas L, Campos H, Vighi M, Vismara R (1993) Caracterización física y química y evaluación de la calidad para uso múltiple del agua del Río Biobío (Chile Central). In: Faranda F, Parra O (Eds) Evaluación de la Calidad del Agua y Ecología del Sistema Limnético y Fluvial del Río Biobío. Grupo Editor EULA, Chile, pp 15–160Google Scholar
  50. Pizarro J, Vergara PM, Rodríguez JA, Sanhueza PA, Castro SA (2010) Nutrients dynamics in the main river basins of the centre-southern region of Chile. J Hazard Mater 175:608–613CrossRefGoogle Scholar
  51. Radic JP (2010) Cenozoic basins and their control on volcanism of Nevados de Chillán and Copahue-Callaqui complexes (36-39°S, Southern Andes. Andean Geol 37:220–246Google Scholar
  52. Roux D, Jooste S, MacKay H (1996) Substance-specific water quality criteria for the protection of South African freshwater ecosystems: Methods for derivation and initial results for some inorganic toxic substances. S Afr J Sci 92:198–206Google Scholar
  53. Saavedra L, Quiñones RA, Becerra J (2014) Distribution and sources of phytosterols in coastal and river sediments of south-central Chile. Lat Am J Aquat Res 42:61–84CrossRefGoogle Scholar
  54. Saavedra F (2015) Evaluación de los efectos de efluentes de plantas de tratamiento de aguas servidas sobre Oncorhynchus mykiss mediante el uso de experimentos de laboratorio y terreno en la Cuenca del Biobío. Tesis Doctoral, Universidad de Concepción, ChileGoogle Scholar
  55. Sanchez-Hernandez J, Fossi M, Leonzio C, Focardi S, Barra R, Gavilan J, Parra O (1998) Use of biochemical biomarkers as a screening tool to focus the chemical monitoring of organic pollutants in the Biobio river basin (Chile). Chemosphere 37:699–710CrossRefGoogle Scholar
  56. Schneider U (2014) Issues to consider in the derivation of water quality benchmarks for the protection of aquatic life. Environ Sci Pollut Res 21:33–50CrossRefGoogle Scholar
  57. Sikder MT, Kihara Y, Yasuda M, Yustiawati, Mihara Y, Tanaka S, Odgerel D, Mijiddorj B, Syawal SM, Hosokawa T, Saito T, Kurasaki M (2013) River water pollution in developed and developing countries: judge and assessment of physicochemical characteristics and selected dissolved metal concentration. Clean-Soil Air Water 41:60–68CrossRefGoogle Scholar
  58. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  59. Srinivasan V, Thomas BK, Jamwal P, Lele S (2013) Climate vulnerability and adaptation of water provisioning in developing countries: approaches to disciplinary and research-practice integration. Curr Opin Env Sust 5:378–383CrossRefGoogle Scholar
  60. Stephen CE, Mount DI, Hansen DJ, Gentile JR, Chapman GA, Brungs WA (2010) Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. PB85-22 7049Google Scholar
  61. Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, Ferraro SP, Dewitt TH, Redmond MS (1995) ΣPAH: a model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. Environ Toxicol Chem 14:1977–1987CrossRefGoogle Scholar
  62. von der Ohe PC, Dulio V, Slobodnik J, De Deckere E, Kuehne R, Ebert R, Ginebreda A, De Cooman W, Schueuermann G, Brack W (2011) A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Sci Total Environ 409:2064–2077CrossRefGoogle Scholar
  63. Wu F, Meng W, Zhao X, Li H, Zhang R, Cao Y, Liao H (2010) China embarking on development of its own national water quality criteria system. Environ Sci Technol 44:7992–7993CrossRefGoogle Scholar
  64. Yan S, Zhou Q, Gao J (2012) Methodology for derivation of water quality criteria for protecting aquatic environment and future development. Crit Rev Env Sci Tec 42:2471–2503CrossRefGoogle Scholar
  65. Zhang X, Xiong L, Liu Y, Deng C, Mao S (2014) Histopathological and estrogen effect of pentachlorophenol on the rare minnow (Gobiocypris rarus). Fish Physiol Biochem 40:805–816CrossRefGoogle Scholar
  66. Zheng W, Wang X, Yu H, Tao X, Zhou Y, Qu W (2011) Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environ Sci Technol 45:4668–4675CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Álvaro Alonso
    • 1
    • 2
    Email author
  • Ricardo Figueroa
    • 2
  • Pilar Castro-Díez
    • 1
  1. 1.Department of Life Sciences, Docent Unit of Ecology, Faculty of SciencesUniversity of AlcaláMadridSpain
  2. 2.Department of Aquatic Systems, Faculty of Environmental Sciences, Center EULA-Chile and Center CRHIAMUniversity of ConcepciónConcepciónChile

Personalised recommendations