Abstract
Recently, interest in utilizing ecosystems for disaster risk reduction has increased, even though there remains considerable uncertainty regarding the role of ecosystems in buffering against natural hazards. This ecosystem role can be considered an ecosystem service. Although a strong body of evidence shows that biodiversity enhances ecosystem services, there are only a few studies of the relationship between biodiversity and the role of the ecosystem in reducing the risk of natural disasters. To explore the desired state of an ecosystem for disaster risk reduction we applied the finding that biodiversity enhances ecosystem services to evaluate the role of woody vegetation in reducing the frequency and severity of shallow landslides. Using information related to shallow landslides and woody vegetation in Japan as a case study, we compared the severity of shallow landslides (i.e., landslide volume) with tree species richness. Although we provide no direct evidence that tree species richness reduces shallow landslide volume, we found that the predictability of the model, which evaluated relationships between landslide volume and environmental variables in watersheds throughout the Japanese Archipelago, increased with tree species richness. This finding suggests that biodiversity is likely associated with shallow landslide risk reduction, emphasizing a possible reduction of spatial and temporal uncertainty in the roles of woody vegetation. Our study identifies a need for socioecological systems to build new approaches found on the functionality of such ecosystems.
This is a preview of subscription content, access via your institution.


References
Abe K (2006) Forest function to prevent shallow landslides (Shinrin no motu syamenhoukaiyokushikinou). J Jpn Soc Revegetation Technol 31(3):330–337. (in Japanese)
Allen DC, Cardinale BJ, Wynn-Thompson T (2016) Plant biodiversity effects in reducing fluvial erosion are limited to low species richness. Ecology 97(1):17–24. doi:10.1890/15-0800.1
Balvanera P, Pfisterer AB, Buchmann N et al. (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x
Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888. doi:10.1007/s10021-015-9869-6
Biodiversity Center of Japan, Nature Conservation Bureau, Ministry of the environment (2010) Biodiversity of Japan: A harmonius coexistence between nature and humankind. Heibonsha Ltd, Tokyo
Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Chang Biol 13:2379–2395. doi:10.1111/j.1365-2486.2007.01446.x
Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlinear Process Geophys 16:179–188. doi:10.5194/npg-16-179-2009
Buckley GP, Ito S, McLanchlan S (2002) Temperate woodlands. In: Perrow MR, Davy AJ (eds.) Handbook of Ecological Restration Vol. 2 – Restration in practice. Cambridge University Press, UK, pp 503–538
Canadell J, Jackson RB, Ehleringer JR et al. (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595. doi:10.1007/BF00329030
Cardinale BJ, Duffy JE, Gonzalez A et al. (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi:10.1038/nature11148
Chisholm RA, Muller-Landau HC, Abdul Rahman K et al. (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. doi:10.1111/1365-2745.12132
Dhakal AS, Sidle RC (2003) Long-term modelling of landslides for different forest management practices. Earth Surf Process Landf 28:853–868. doi:10.1002/esp.499
Díaz S, Quétier F, Cáceres DM et al. (2011) Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc Natl Acad Sci 108:895–902. doi:10.1073/pnas.1017993108
Dudley N, Buyck C, Furuta N, Pedrot C, Renaud F, Sudmeier-Rieux K (2015) Protected areas as tools for disaster risk reduction. A handbook for practitioners. MOEJ and IUCN, Tokyo and Gland, Switzerland
Gamfeldt L, Snäll T, Bagchi R et al. (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340. doi:10.1038/ncomms2328
Garnier E, Navas ML, Grigulis K (2016) Plant functional diversity: Organism traits, community structure, and ecosystem properties. Oxford university press, UK
Geißler C, Nadrowski K, Kühn P et al. (2013) Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity. PLoS ONE 8(2):e49618. doi:10.1371/journal.pone.0049618
Ghestem M, Veylon G, Bernard A, Vanel Q, Stokes A (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377:43–61. doi:10.1007/s11104-012-1572-1
Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope stability. Wiley, Chichester, pp 187–230
Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Jactel H (2016) Tree diversity reduces pest damage in mature forests across Europe Biol Lett 12:20151037. doi:10.1098/rsbl.2015.1037
Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229. doi:10.1016/j.epsl.2009.01.005
Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi:10.1007/s10346-007-0112-1
Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK (2011) Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol Lett 14:1108–1116. doi:10.1111/j.1461-0248.2011.01679.x
Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manage 155:81–95. doi:10.1016/S0378-1127(01)00549-7
Hayashi S (2008) Conservation and erosion control engineering: Prediction and mitigation of sediment-related disaster (Hozen sabogaku nyumon: Dosyasaigai no yochi to yobou). Denki Shoin, Tokyo, (in Japanese)
Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z
Hong Y, Hiura H, Shino K, Sassa K, Fukuoka H (2005) Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring system-case study on Zentoku landslide, Japan. Landslides 2:31–41. doi:10.1007/s10346-005-0044-6
Igarashi T, Makino S, Tanaka H, Masaki T (2014) Alternative management system for the restration of biodiversity in plantation forest of Japan. Bulletin of FFPRI 13:29–42. (in Japanese)
Isbell F, Craven D, Connolly J et al. (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577. doi:10.1038/nature15374
Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848. doi:10.1111/j.1461-0248.2007.01073.x
Karizumi N (2010) The latest illustrations of tree roots. Seibundo Shinkosha Publishing, Tokyo, (in Japanese)
Kira T (1991) Forest ecosystems of east and southeast Asia in a global perspective. Ecol Res 6:185–200. doi:10.1007/BF02347161
Kitamura Y, Namba S (1981) The function of tree roots upon landslide prevention presumed through the uprooting test. Bull Forestry and Forest Prod Res Inst 313:175–208
Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101. doi:10.1007/s10342-007-0186-2
Li Y, Wang Y, Ma C et al. (2016) Influence of the spatial layout of plant roots on slope stability. Ecol Eng 91:477–486. doi:10.1016/j.ecoleng.2016.02.026
Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi:10.1038/35083573
Mao Z, Bourrier F, Stokes A, Fourcaud T (2014) Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems. Ecol Modell 273:11–22. doi:10.1016/j.ecolmodel.2013.10.017
Marston RA (2010) Geomorphology and vegetation on hillslopes: interactions, dependencies, and feedback loops. Geomorphology 116:206–217. doi:10.1016/j.geomorph.2009.09.028
Millennium Ecosystem Assessment (2003) Ecosystems and human well-being: A framework for assessment. Island Press, Washington DC
Moos C, Bebi P, Graf F et al. (2016) How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf Process Landforms 41:951–960. doi:10.1002/esp.3887
Mori AS (2011) Making society more resilient. Nature 474:284. doi:10.1038/474284c
Mori AS, Lertzman KP, Gustafsson L (2016) Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol doi:10.1111/1365-2664.12669
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x
Nichols JD, Bristow M, Vanclay JK (2006) Mixed-species plantations: Prospects and challenges. For Ecol Manage 233:383–390. doi:10.1016/j.foreco.2006.07.018
Nilaweera NS, Nutalaya P (1999) Role of tree roots in slope stabilisation. Bull Eng Geol Environ 57:337–342. doi:10.1007/s100640050056
Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New York
Pohl M, Alig D, Korner C, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil 324:91–102. doi:10.1007/s11104-009-9906-3
R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Ravenek JM, Bessler H, Engels C et al. (2014) Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123:1528–1536. doi:10.1111/oik.01502
Renaud FG, Sudmeier-Rieux K, Estrella M (2013) The role of ecosystem in disaster risk reduction. United Nations University Press, Tokyo
Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402. doi:10.1007/s00468-007-0132-4
Roering JJ, Schmidt KM, Stock JD, Dietrich WE, Montgomery DR (2003) Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can Geotech J 40:237–253. doi:10.1139/t02-113
Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity–duration thresholds in Japan. Geomorphology 118:167–175. doi:10.1016/j.geomorph.2009.12.016
Seiwa K (2013) Steps in recovering biodiversity of conifer plantation: an effective combination of edge- and thining effects. Japanese Journal of Ecology 63:251–260. (in Japanese)
Sudmeier-Rieux K, Ash N, Murti R (2013) Environmental guidance note for disaster risk reduction: Healthy ecosystems for human security and climate change adaptation. IUCN, Gland, Switzerland
Sidle RC, Ochiai H (2006) Landslides: Processes, prediction, and land use. Water Resources Monograph Series, Vol. 18. American Geophysical Union, Washington DC
Smith RA, Schwarz GE, Alexander RB (1997) Regional interpretation of water-quality monitoring data. Water Resour Res 33:2781–2798. doi:10.1029/97WR02171
Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle R (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30. doi:10.1007/s11104-009-0159-y
Suganuma H, Abe Y, Taniguchi M et al. (2006) Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. For Ecol Manage 222:75–87. doi:10.1016/j.foreco.2005.10.014
Tilman D (1999) The Ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5):1455–1475. doi:10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2
Tsukamoto S, Kobashi S (1996) New erosion control engineering (Shin sabokougau), 6th edn. Asakurashoin, Tokyo, pp 43–60. (in Japanese)
Turner MG, Dale VH (1998) Comparing large, infrequent disturbances: what have we learned? Ecosystems 1:493–496. doi:10.1007/s100219900045
van der Plas F, Manning P, Allan E et al. (2016) Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109. doi:10.1038/ncomms11109
Watson A, Phillips C, Marden M (1999) Root strength , growth , and rates of decay : root reinforcement changes of two tree species and their contribution to slope stability. Plant Soil 217:39–47. doi:10.1023/A:1004682509514
Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3:149–158. doi:10.1007/s10346-005-0031-y
Acknowledgements
This study was primarily supported by The Toyota Foundation, Japan (D14-R-0993). The authers also aknowledge the Environmental Research and Technology Development Fund (S-14) for discussing the issue of biodiversity and Eco-DRR.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no competing interests.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Kobayashi, Y., Mori, A.S. The Potential Role of Tree Diversity in Reducing Shallow Landslide Risk. Environmental Management 59, 807–815 (2017). https://doi.org/10.1007/s00267-017-0820-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00267-017-0820-9
Keywords
- Eco-DRR
- Biodiversity
- Landslide
- Ecosystem services