Environmental Management

, Volume 59, Issue 5, pp 807–815 | Cite as

The Potential Role of Tree Diversity in Reducing Shallow Landslide Risk

  • Yuta Kobayashi
  • Akira S. Mori


Recently, interest in utilizing ecosystems for disaster risk reduction has increased, even though there remains considerable uncertainty regarding the role of ecosystems in buffering against natural hazards. This ecosystem role can be considered an ecosystem service. Although a strong body of evidence shows that biodiversity enhances ecosystem services, there are only a few studies of the relationship between biodiversity and the role of the ecosystem in reducing the risk of natural disasters. To explore the desired state of an ecosystem for disaster risk reduction we applied the finding that biodiversity enhances ecosystem services to evaluate the role of woody vegetation in reducing the frequency and severity of shallow landslides. Using information related to shallow landslides and woody vegetation in Japan as a case study, we compared the severity of shallow landslides (i.e., landslide volume) with tree species richness. Although we provide no direct evidence that tree species richness reduces shallow landslide volume, we found that the predictability of the model, which evaluated relationships between landslide volume and environmental variables in watersheds throughout the Japanese Archipelago, increased with tree species richness. This finding suggests that biodiversity is likely associated with shallow landslide risk reduction, emphasizing a possible reduction of spatial and temporal uncertainty in the roles of woody vegetation. Our study identifies a need for socioecological systems to build new approaches found on the functionality of such ecosystems.


Eco-DRR Biodiversity Landslide Ecosystem services 



This study was primarily supported by The Toyota Foundation, Japan (D14-R-0993). The authers also aknowledge the Environmental Research and Technology Development Fund (S-14) for discussing the issue of biodiversity and Eco-DRR.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

267_2017_820_MOESM1_ESM.eps (138 kb)
Supplementary Information


  1. Abe K (2006) Forest function to prevent shallow landslides (Shinrin no motu syamenhoukaiyokushikinou). J Jpn Soc Revegetation Technol 31(3):330–337. (in Japanese)CrossRefGoogle Scholar
  2. Allen DC, Cardinale BJ, Wynn-Thompson T (2016) Plant biodiversity effects in reducing fluvial erosion are limited to low species richness. Ecology 97(1):17–24. doi: 10.1890/15-0800.1 Google Scholar
  3. Balvanera P, Pfisterer AB, Buchmann N et al. (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi: 10.1111/j.1461-0248.2006.00963.x CrossRefGoogle Scholar
  4. Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888. doi: 10.1007/s10021-015-9869-6 CrossRefGoogle Scholar
  5. Biodiversity Center of Japan, Nature Conservation Bureau, Ministry of the environment (2010) Biodiversity of Japan: A harmonius coexistence between nature and humankind. Heibonsha Ltd, TokyoGoogle Scholar
  6. Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Chang Biol 13:2379–2395. doi: 10.1111/j.1365-2486.2007.01446.x CrossRefGoogle Scholar
  7. Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlinear Process Geophys 16:179–188. doi: 10.5194/npg-16-179-2009 CrossRefGoogle Scholar
  8. Buckley GP, Ito S, McLanchlan S (2002) Temperate woodlands. In: Perrow MR, Davy AJ (eds.) Handbook of Ecological Restration Vol. 2 – Restration in practice. Cambridge University Press, UK, pp 503–538Google Scholar
  9. Canadell J, Jackson RB, Ehleringer JR et al. (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595. doi: 10.1007/BF00329030 CrossRefGoogle Scholar
  10. Cardinale BJ, Duffy JE, Gonzalez A et al. (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 CrossRefGoogle Scholar
  11. Chisholm RA, Muller-Landau HC, Abdul Rahman K et al. (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. doi: 10.1111/1365-2745.12132 CrossRefGoogle Scholar
  12. Dhakal AS, Sidle RC (2003) Long-term modelling of landslides for different forest management practices. Earth Surf Process Landf 28:853–868. doi: 10.1002/esp.499 CrossRefGoogle Scholar
  13. Díaz S, Quétier F, Cáceres DM et al. (2011) Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature’s benefits to society. Proc Natl Acad Sci 108:895–902. doi: 10.1073/pnas.1017993108 CrossRefGoogle Scholar
  14. Dudley N, Buyck C, Furuta N, Pedrot C, Renaud F, Sudmeier-Rieux K (2015) Protected areas as tools for disaster risk reduction. A handbook for practitioners. MOEJ and IUCN, Tokyo and Gland, SwitzerlandGoogle Scholar
  15. Gamfeldt L, Snäll T, Bagchi R et al. (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340. doi: 10.1038/ncomms2328 CrossRefGoogle Scholar
  16. Garnier E, Navas ML, Grigulis K (2016) Plant functional diversity: Organism traits, community structure, and ecosystem properties. Oxford university press, UKGoogle Scholar
  17. Geißler C, Nadrowski K, Kühn P et al. (2013) Kinetic Energy of Throughfall in Subtropical Forests of SE China – Effects of Tree Canopy Structure, Functional Traits, and Biodiversity. PLoS ONE 8(2):e49618. doi: 10.1371/journal.pone.0049618 CrossRefGoogle Scholar
  18. Ghestem M, Veylon G, Bernard A, Vanel Q, Stokes A (2014) Influence of plant root system morphology and architectural traits on soil shear resistance. Plant Soil 377:43–61. doi: 10.1007/s11104-012-1572-1 CrossRefGoogle Scholar
  19. Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope stability. Wiley, Chichester, pp 187–230Google Scholar
  20. Guyot V, Castagneyrol B, Vialatte A, Deconchat M, Jactel H (2016) Tree diversity reduces pest damage in mature forests across Europe Biol Lett 12:20151037. doi: 10.1098/rsbl.2015.1037 CrossRefGoogle Scholar
  21. Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229. doi: 10.1016/j.epsl.2009.01.005 CrossRefGoogle Scholar
  22. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi: 10.1007/s10346-007-0112-1 CrossRefGoogle Scholar
  23. Haas SE, Hooten MB, Rizzo DM, Meentemeyer RK (2011) Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol Lett 14:1108–1116. doi: 10.1111/j.1461-0248.2011.01679.x CrossRefGoogle Scholar
  24. Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manage 155:81–95. doi: 10.1016/S0378-1127(01)00549-7 CrossRefGoogle Scholar
  25. Hayashi S (2008) Conservation and erosion control engineering: Prediction and mitigation of sediment-related disaster (Hozen sabogaku nyumon: Dosyasaigai no yochi to yobou). Denki Shoin, Tokyo, (in Japanese)Google Scholar
  26. Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi: 10.1007/s11069-006-9104-z CrossRefGoogle Scholar
  27. Hong Y, Hiura H, Shino K, Sassa K, Fukuoka H (2005) Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring system-case study on Zentoku landslide, Japan. Landslides 2:31–41. doi: 10.1007/s10346-005-0044-6 CrossRefGoogle Scholar
  28. Igarashi T, Makino S, Tanaka H, Masaki T (2014) Alternative management system for the restration of biodiversity in plantation forest of Japan. Bulletin of FFPRI 13:29–42. (in Japanese)Google Scholar
  29. Isbell F, Craven D, Connolly J et al. (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577. doi: 10.1038/nature15374 CrossRefGoogle Scholar
  30. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848. doi: 10.1111/j.1461-0248.2007.01073.x CrossRefGoogle Scholar
  31. Karizumi N (2010) The latest illustrations of tree roots. Seibundo Shinkosha Publishing, Tokyo, (in Japanese)Google Scholar
  32. Kira T (1991) Forest ecosystems of east and southeast Asia in a global perspective. Ecol Res 6:185–200. doi: 10.1007/BF02347161 CrossRefGoogle Scholar
  33. Kitamura Y, Namba S (1981) The function of tree roots upon landslide prevention presumed through the uprooting test. Bull Forestry and Forest Prod Res Inst 313:175–208Google Scholar
  34. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101. doi: 10.1007/s10342-007-0186-2 CrossRefGoogle Scholar
  35. Li Y, Wang Y, Ma C et al. (2016) Influence of the spatial layout of plant roots on slope stability. Ecol Eng 91:477–486. doi: 10.1016/j.ecoleng.2016.02.026 CrossRefGoogle Scholar
  36. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi: 10.1038/35083573 CrossRefGoogle Scholar
  37. Mao Z, Bourrier F, Stokes A, Fourcaud T (2014) Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems. Ecol Modell 273:11–22. doi: 10.1016/j.ecolmodel.2013.10.017 CrossRefGoogle Scholar
  38. Marston RA (2010) Geomorphology and vegetation on hillslopes: interactions, dependencies, and feedback loops. Geomorphology 116:206–217. doi: 10.1016/j.geomorph.2009.09.028 CrossRefGoogle Scholar
  39. Millennium Ecosystem Assessment (2003) Ecosystems and human well-being: A framework for assessment. Island Press, Washington DCGoogle Scholar
  40. Moos C, Bebi P, Graf F et al. (2016) How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf Process Landforms 41:951–960. doi: 10.1002/esp.3887 CrossRefGoogle Scholar
  41. Mori AS (2011) Making society more resilient. Nature 474:284. doi: 10.1038/474284c CrossRefGoogle Scholar
  42. Mori AS, Lertzman KP, Gustafsson L (2016) Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J Appl Ecol doi: 10.1111/1365-2664.12669
  43. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  44. Nichols JD, Bristow M, Vanclay JK (2006) Mixed-species plantations: Prospects and challenges. For Ecol Manage 233:383–390. doi: 10.1016/j.foreco.2006.07.018 CrossRefGoogle Scholar
  45. Nilaweera NS, Nutalaya P (1999) Role of tree roots in slope stabilisation. Bull Eng Geol Environ 57:337–342. doi: 10.1007/s100640050056 CrossRefGoogle Scholar
  46. Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New YorkGoogle Scholar
  47. Pohl M, Alig D, Korner C, Rixen C (2009) Higher plant diversity enhances soil stability in disturbed alpine ecosystems. Plant and Soil 324:91–102. doi: 10.1007/s11104-009-9906-3 CrossRefGoogle Scholar
  48. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  49. Ravenek JM, Bessler H, Engels C et al. (2014) Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123:1528–1536. doi: 10.1111/oik.01502 CrossRefGoogle Scholar
  50. Renaud FG, Sudmeier-Rieux K, Estrella M (2013) The role of ecosystem in disaster risk reduction. United Nations University Press, TokyoGoogle Scholar
  51. Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402. doi: 10.1007/s00468-007-0132-4 CrossRefGoogle Scholar
  52. Roering JJ, Schmidt KM, Stock JD, Dietrich WE, Montgomery DR (2003) Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can Geotech J 40:237–253. doi: 10.1139/t02-113 CrossRefGoogle Scholar
  53. Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity–duration thresholds in Japan. Geomorphology 118:167–175. doi: 10.1016/j.geomorph.2009.12.016 CrossRefGoogle Scholar
  54. Seiwa K (2013) Steps in recovering biodiversity of conifer plantation: an effective combination of edge- and thining effects. Japanese Journal of Ecology 63:251–260. (in Japanese)Google Scholar
  55. Sudmeier-Rieux K, Ash N, Murti R (2013) Environmental guidance note for disaster risk reduction: Healthy ecosystems for human security and climate change adaptation. IUCN, Gland, SwitzerlandGoogle Scholar
  56. Sidle RC, Ochiai H (2006) Landslides: Processes, prediction, and land use. Water Resources Monograph Series, Vol. 18. American Geophysical Union, Washington DCCrossRefGoogle Scholar
  57. Smith RA, Schwarz GE, Alexander RB (1997) Regional interpretation of water-quality monitoring data. Water Resour Res 33:2781–2798. doi: 10.1029/97WR02171 CrossRefGoogle Scholar
  58. Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle R (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30. doi: 10.1007/s11104-009-0159-y CrossRefGoogle Scholar
  59. Suganuma H, Abe Y, Taniguchi M et al. (2006) Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. For Ecol Manage 222:75–87. doi: 10.1016/j.foreco.2005.10.014 CrossRefGoogle Scholar
  60. Tilman D (1999) The Ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5):1455–1475. doi:10.1890/0012-9658(1999)080[1455:TECOCI]2.0.CO;2Google Scholar
  61. Tsukamoto S, Kobashi S (1996) New erosion control engineering (Shin sabokougau), 6th edn. Asakurashoin, Tokyo, pp 43–60. (in Japanese)Google Scholar
  62. Turner MG, Dale VH (1998) Comparing large, infrequent disturbances: what have we learned? Ecosystems 1:493–496. doi: 10.1007/s100219900045 CrossRefGoogle Scholar
  63. van der Plas F, Manning P, Allan E et al. (2016) Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109. doi: 10.1038/ncomms11109 CrossRefGoogle Scholar
  64. Watson A, Phillips C, Marden M (1999) Root strength , growth , and rates of decay : root reinforcement changes of two tree species and their contribution to slope stability. Plant Soil 217:39–47. doi: 10.1023/A:1004682509514 CrossRefGoogle Scholar
  65. Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3:149–158. doi: 10.1007/s10346-005-0031-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Graduate School of Environment and Information Science, Yokohama National UniversityYokohamaJapan

Personalised recommendations