Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas

Abstract

Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. AAFC (2015) Agriculture and Agri-Food Canada Biomass Inventory Mapping and Analysis Tool. http://www.agr.gc.ca/atlas/bimat. Accessed 15 April 2015

  2. Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hellett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  3. Achard F, Eva HD, Mayaux P, Stibig H J, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Glob Biogeochem Cycles 18. doi:10.1029/2003GB002142

  4. Achten WMJ, Akinnifesi FK, Maes WH, Trabucco A, Aerts R, Mathijs E, Reubens B, Singh V, Verchot L, Muys B (2010) Jatropha integrated agroforestry systems—biodiesel pathways towards sustainable rural development. In: Ponterio C, Ferra C (eds) Jatropha curcas as a Premier Biofuel: cost, Growth and Management. NOVA Science Publishers, Hauppauge, NY, pp 85–102

    Google Scholar 

  5. Achten MJ, Trabucco A, Maes WH, Verchot LV, Aerts R, Mathijs E, Vantomme P, Singh VP, Muys B (2012) Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands—lessons learned from Jatropha. J Arid Environ 98:135–145

    Article  Google Scholar 

  6. Adams MB, Burger JA, Jenkins AB, Zelazny L (2000) Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests. For Ecol Manag 138:301–319

    Article  Google Scholar 

  7. Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–691

    Article  Google Scholar 

  8. Ågren GI, Wetterstedt JÅM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modelling the interaction between nitrogen and phosphorus. New Phytol 194:953–960. doi:10.1111/j.1469-8137.2012.04116.x

    Article  CAS  Google Scholar 

  9. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  10. Albaugh JM, Sucre EB, Leggett ZH et al (2012a) Evaluation of intercropped switchgrass establishment under a range of experimental site preparation treatments in a forested setting on the Lower Coastal Plain of North Carolina, USA. Biomass Bioenergy 46:673–682. doi:10.1016/j.biombioe.2012.06.029

    Article  Google Scholar 

  11. Albaugh TJ, Vance ED, Gaudreault C, Fox TR, Allen HL, Stape JL, Rubilar RA (2012b) Carbon emissions and sequestration from fertilization of pine in the southeastern United States. For Sci 58:419–429

    Google Scholar 

  12. Allen LH (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34

    CAS  Article  Google Scholar 

  13. Allmaras RR, Copeland SM, Copeland PJ, Oussible M (1996) Spatial relations between oat residue and ceramic spheres when incorporated sequentially by tillage. Soil Sci Soc Am J 60:1209–1216

    CAS  Article  Google Scholar 

  14. Anderson DM, Glibert PM, Burkholder CM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  15. Angers DA, Eriksen-Hamel NS (2008) Full-Inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J 72:1370–1374. doi:10.2136/sssaj2007.0342

    CAS  Article  Google Scholar 

  16. Archibald DJ, Wiltshire WB, Morris DM (1997) Forest management guidelines for the protection of the physical environment. Version 1.0. Ontario Ministry of Natural Resources #51032, ISBN 0-7794-2333-X

  17. Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, van Osch FP, Rietkerk M, Chen J, Gotsch S, Tobon C, Geissert DR, Gomez-Tale A, Vache K, Dawson TE (2011) Ecohydrological advances and applications in plant water relations research: a review. J Plant Ecol 4:3–22. doi:10.1093/jpe/rtr005

    Article  Google Scholar 

  18. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. doi:10.1007/s11104-010-0464-5

    CAS  Article  Google Scholar 

  19. Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007. doi:10.1016/s0038-0717(02)00033-0

    CAS  Article  Google Scholar 

  20. Barreto RC, Madari BE, Maddock JEL, Machado PLOA, Torres E, Franchini JC, Costa AR (2009) The impact of soil management on aggregation, carbon stabilization, and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agric Ecosyst Environ 132:243–251

    CAS  Article  Google Scholar 

  21. Basiliko N, Khan A, Prescott CE, Roy R, Grayston SJ (2009) Soil greenhouse gas and nutrient dynamics in fertilized western Canadian plantation forests. Can J For Res 39:1220–1235

    CAS  Article  Google Scholar 

  22. Batjes NH (2009) Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use Manag 25:124–127

    Article  Google Scholar 

  23. Battle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137:47–58

    Article  CAS  Google Scholar 

  24. Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  25. B.C. Ministry of Forests (1999) Hazard assessment keys for evaluating site sensitivity to soil degrading processes guidebook, 2nd ed, Version 2.1. For Prac Br, B.C. Min For, Victoria, B.C. Forest Practices Code of British Columbia Guidebook

  26. Bélanger N, Paré D, Bouchard M, Daoust G (2004) Is the use of trees with superior growth a threat to soil nutrient availability? A case study with Norway spruce. Can J For Res 34:560–572

    Article  Google Scholar 

  27. Benjamin JG, Nelson DC, Vigil MF (2003) Quantifying effects of soil conditions on plant growth and crop production. Geoderma 116:137–148

    Article  Google Scholar 

  28. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234

    Article  Google Scholar 

  29. Berndes G, Bird N, Cowie A (2010) Bioenergy, land use change and climate change mitigation. IEA Bioenergy ExCo 2010:3

    Google Scholar 

  30. Berthrong ST, Jobbagy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241

    Article  Google Scholar 

  31. Biederman L, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214

    CAS  Article  Google Scholar 

  32. Billings WD, Peterson KM, Luken JO, Mortensen DA (1984) Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra ecosystems. Oecol 65:26–29

    Article  Google Scholar 

  33. Binkley D, Fisher R (2013) Ecology and management of forest soils, 4th edn. Wiley-Blackwell, New York

    Google Scholar 

  34. Binkley D, Burnham H, Allen HL (1999) Water quality impacts of forest fertilization with nitrogen and phosphorus. For Ecol Manag 121:191–213

    Article  Google Scholar 

  35. Blanco-Canqui H, Lal R (2008) Corn stover removal impacts on micro-scale soil physical properties. Geoderma 145:335–346. doi:10.1016/j.geoderma.2008.03.016

    Article  Google Scholar 

  36. Blanco-Canqui H, Lal R (2009a) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28:139–163. doi:10.1080/07352680902776507

    CAS  Article  Google Scholar 

  37. Blanco-Canqui H, Lal R (2009b) Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci Soc Am J 73:418–426. doi:10.2136/sssaj2008.0141

    CAS  Article  Google Scholar 

  38. Boden T, Andres B, Marland G (2013) Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring, 1751–2010. Data at http://cdiac.ornl.gov/ftp/ndp030/global.1751_2010.ems. Accessed 19 March 2015

  39. Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438

    Article  CAS  Google Scholar 

  40. Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  41. Burger JA, Kelting DL (1999) Using soil quality indicators to assess forest stand management. For Ecol Manag 122:155–166

    Article  Google Scholar 

  42. Burger JA, Pritchett WL (1984) Effects of clearfelling and site preparation on nitrogen mineralization in a southern pine stand. Soil Sci Soc Am J 48:1432–1437

    CAS  Article  Google Scholar 

  43. Burgess MS, Mehuys GR, Madramooto CA (2002) Decomposition of grain-corn residues (Zea mays L.): a litterbag study under three tillage systems. Can J Soil Sci 82:127–138

    Article  Google Scholar 

  44. Buttle JH, Murray CD (2011) Hydrological implications of forest biomass use. Final report prepared for Environment Canada, Ottawa, Canada. August 31, 2011

  45. Buyanovsky GA, Brown JR, Wagner GH (1997) Sanborn field effect of 100 years of cropping on soil parameter. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, FL, pp 205–226

    Google Scholar 

  46. Casas (2006) La oportunidad de preservar la calidad y la salud de los suelos http://www.produccion-animal.com.ar/suelos_ganaderos/30-preservar_calidad_y_salud_suelos.pdf

  47. Cerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM, Cerri CC (2007) Tropical agriculture and global warming: impacts and mitigation options. Sci Agric 64:83–99

    CAS  Article  Google Scholar 

  48. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  49. Ciampitti IA, García FO (2007) Requerimientos nutricionales, absorción y extracción de macronutrientes y nutrientes secundarios. I Cereales, Oleaginosos e Industriales. Informaciones Agronómicas 33, Archivo Agronómico 11. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. Disponible en http://www.ipni.net/ppiweb/ltams.nsf/$webindex/E036AC788900A6560325728E0069FF05

  50. Conley DJ (2000) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410:87–96

    Article  Google Scholar 

  51. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ 19:292–305. doi:10.1016/j.gloenvcha.2008.10.009

    Article  Google Scholar 

  52. Correll DL (1999) Phosphorus: a rate limiting nutrient in surface waters. Poult Sci 78:674–682

    CAS  Article  Google Scholar 

  53. Cramer MD, Hawkins HJ, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24

    Article  Google Scholar 

  54. da Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range of soils. Soil Sci Soc Am J 58:1775–1781

    Article  Google Scholar 

  55. Darmody RG, Peck TR (1997) Soil organic changes through time at the university of Illinois Morrow Plots. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, FL, pp 161–169

    Google Scholar 

  56. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10:69–74. doi:10.1890/110003

    Article  Google Scholar 

  57. De Graaff MA, Van Groenigen JK, Six J, Hungate B, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091

    Article  Google Scholar 

  58. DeFries RS, Asner GP and Houghton RA (eds) (2004) Ecosystems and land use change. American Geophysical Union, Geophysical Monograph Series 153:344. doi:10.1029/GM153

  59. Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83:9–24. doi:10.1016/j.still.2005.02.007

    Article  Google Scholar 

  60. Del Grosso SJ, Ojima DS, Parton WJ, Stehfest E, Heisteman M, De Angelo B, Rose S (2009) Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Global Planet Change 67:44–50. doi:10.1016/j.gloplacha.2008.12.006

    Article  Google Scholar 

  61. Del Grosso SJ, White JW, Wilson G, Vandenberg B, Karlen DL, Follett RF, Johnson JMF, Franzluebbers AJ, Archer DW, Gollany HT, Liebig MA, Ascough J, Reyes-Fox M, Pellack L, Starr J, Barbour N, Polumsky RW, Gutwein M, James D (2013) Introducing the GRACEnet/REAP data contribution, discovery and retrieval system. J Environ Qual 42:1274–1280. doi:10.2134/jeq2013.03.0097

    Article  CAS  Google Scholar 

  62. Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295

    CAS  Article  Google Scholar 

  63. Denef K, Archibeque S, Paustian K (2011) Greenhouse gas emissions from U.S. agriculture and forestry: a review of emissions, sources, controlling factors, and mitigation potential. Interim report to USDA under Contract #GS-23F-8182H

  64. Dimitriou I, Mola-Yudego B, Aronsson P (2012) Impact of willow short rotation coppice on water quality. Bioenerg Res 5:537–545

    CAS  Article  Google Scholar 

  65. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob Chang Biol 17:1658–1670

    Article  Google Scholar 

  66. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi river. PNAS 105:4513–4518

    CAS  Article  Google Scholar 

  67. Ducey M, Allen HL (2001) Nutrient supply and fertilization efficiency in midrotation loblolly pine plantations: a modeling analysis. For Sci 47(1):96–102

    Google Scholar 

  68. Dymond CD, Titus BD, Stinson G, Kurz WA (2010) Future quantities and spatial distribution of harvesting residue and dead wood from natural disturbances in Canada. For Ecol Manag 260:181–192

    Article  Google Scholar 

  69. Ebermayer E (1876) Die gesamte Lehre der Waldstreu, mit Rücksicht auf die chemische Statik des Waldbaues. [The entire knowledge of forest litter with consideration of chemical data for silviculture. In German.]. Springer, Berlin

    Google Scholar 

  70. Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18:3237–3251

    Article  Google Scholar 

  71. Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180

    CAS  Article  Google Scholar 

  72. Efroymson RA, Dale VH, Kline KL, McBride AC, Bielicki JM, Smith RL, Parish ES, Schweizer PE, Shaw DM (2013) Environmental indicators of biofuel sustainability: what about context? Environ Manag 51:291–306

    Article  Google Scholar 

  73. Egnell G (2011) Is the site productivity decline in Norway spruce following whole tree harvesting in the final felling in boreal Sweden permanent or temporary? For Ecol Manage 261:148–153

    Article  Google Scholar 

  74. FAO-UNESCO (2007) Digital Soil Map of the World, 2007-02-28, version 3.6. http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116. Accessed 30 May 2014

  75. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    CAS  Article  Google Scholar 

  76. Filoso S, Martinelli LA, Williams MR, Lara LB, Krusche A, Ballester MV, Victoria RL, Camargo PB (2003) Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochem 65:275–294

    CAS  Article  Google Scholar 

  77. Fleming RL, Powers RF, Foster NW, Kranabetter JM, Scott DA, Ponder F Jr, Berch SM, Chapman WK, Kabzems RD, Ludovici KH, Morris DM, Page-Dumroese DS, Sanborn PT, Sanchez FG, Stone DM, Tiarks AE (2006) Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: a regional comparison of Long-Term Soil Productivity sites. Can J For Res 36:529–550

    CAS  Article  Google Scholar 

  78. Follett RF, Paul EA, Leavitt SW, Halvorson AD, Lyon D, Peterson GA (1997) Carbon isotope ratios of Great Plains soils in wheat-fallow systems. Soil Sci Soc Am J 61:1068–1077

    CAS  Article  Google Scholar 

  79. Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switch grass and no-till maize grown for Bioenergy. Bioenergy Res 5:866–875. doi:10.1007/s12155-012-9198-y

    CAS  Article  Google Scholar 

  80. Forestry Commission UK (2009) Guidance on site selection for brash removal. Forest Research, Forestry Commission, UK

  81. FSC (2014) National Forest Stewardship Standards of the Forest Stewardship Council. https://ic.fsc.org/national-standards.247.htm. Accessed 15 May 2014

  82. Garrigues E, Corsona MS, Angers DA, van der Werf HMG, Walter C (2012) Soil quality in Life Cycle Assessment: towards development of an indicator. Ecol Indic 18:434–442

    CAS  Article  Google Scholar 

  83. Gasparatos A, Strombert P, Takeuchi K (2011) Biofuels, ecosystem services and human well-being: putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ 142:111–128

    Article  Google Scholar 

  84. Gassman PW, Williams JR, Wang X, Saleh A, Osei E, Hauck LM, Izaurralde RC, Flowers JD (2010) THE agricultural policy/environmental extender (APEX) model: an emerging tool for landscape and watershed environmental analyses. ASABE 53:711–740

    Article  Google Scholar 

  85. Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. PNAS. doi:10.1073/pnas.1017277108

    Google Scholar 

  86. Giardina CP, Ryan MG (2004) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861. doi:10.1038/35009076

    Article  CAS  Google Scholar 

  87. Giltrap DL, Li CS, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136:292–300

    CAS  Article  Google Scholar 

  88. Gollany HT, Schumacher TE, Evenson P, Lindstrom MJ, Lemme GD (1991) Aggregate stability of an eroded and desurfaced Typic Argiustoll. Soil Sci Soc Am J 55:811–816

    Article  Google Scholar 

  89. Gollany HT, Schumacher TE, Lindstrom MJ, Evenson P, Lemme GD (1992) Topsoil depth and desurfacing effects on properties and productivity of a Typic Argiustoll. Soil Sci Soc Am J 56:220–225

    Article  Google Scholar 

  90. Gollany HT, Molina JAE, Clapp CE, Allmaras RR, Layese MF, Baker JM, Cheng HH (2004) Nitrogen leaching and denitrification in continuous corn as related to residue management. Environ Manag. doi:10.1007/s00267-002.9138-x

    Google Scholar 

  91. Gollany HT, Allmaras RR, Copeland SM, Albrecht SL, Douglas CL Jr (2005) Tillage and nitrogen fertilizer influences on carbon and soluble silica relations in a Pacific Northwest Mollisol. Soil Sci Soc Am J 69:1102–1109

    CAS  Article  Google Scholar 

  92. Gollany HT, Allmaras RR, Copeland SM, Albrecht SL, Douglas CL Jr (2006) Incorporated source carbon and nitrogen fertilization effects on carbon storage and soluble silica in a Haploxeroll. Soil Sci 171:585–597

    CAS  Article  Google Scholar 

  93. Gollany HT, Novak JM, Liang Y, Albrecht SL, Rickman RW, Follett RF, Wilhelm WW, Hunt PG (2010) Simulating soil organic carbon dynamics with residue removal using the CQESTR model. Soil Sci Soc Am J 74:372–383. doi:10.2136/sssaj2009.0086

    CAS  Article  Google Scholar 

  94. Gollany HT, Rickman RW, Liang Y, Albrecht SL, Machado S, Kang S (2011) Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production. Agron J103:234–246

    Article  CAS  Google Scholar 

  95. Gollany HT, Follett RF, Liang Y (2012) CQESTR simulations of soil organic carbon dynamics. In: Liebig MA, Franzluebbers AJ, Follett RF (eds) Managing agricultural greenhouse gases: coordinated agricultural research through GRACEnet to address our changing climate. Academic Press, San Diego, pp 271–292

    Google Scholar 

  96. Gonçalves JLM, Wichert MCP, Gava JL, Serrano MIP (2008) Soil fertility and growth of Eucalyptus grandis in Brazil under different residue management practices. In: Nambiar EKS (eds) Site management and productivity in tropical plantation forests. Proceedings of workshops in Piracicaba (Brazil) 22–26 November 2004 and Bogor (Indonesia) 6–9 November 2006. Bogor, Indonesia. Center for International Forestry Research (CIFOR)

  97. Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, Lafreniere L (2009) Biofuels, land, and water: a systems approach to sustainability. Environ Sci Tech 43:6094–6100

    CAS  Article  Google Scholar 

  98. Gopalakrishnan G, Negri MC, Salas W (2012) Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB Bioenergy 4:739–750

    CAS  Article  Google Scholar 

  99. Govaerts B, Fuentes M, Mezzalama et al (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res 94:209–219

    Article  Google Scholar 

  100. Green CJ, Blackmer AM (1995) Residue decomposition effects on nitrogen availability to corn following corn or soybean. Soil Sci Soc Am J 59:1065–1070

    CAS  Article  Google Scholar 

  101. Gregorich EG, Ellert BH, Drury CF, Liang BC (1996) Fertilization effects on soil organic matter turnover and corn residue placement. Soil Sci Soc Am J 60:472–476

    CAS  Article  Google Scholar 

  102. Gunkel G, Kosmol J, Sobral M, Rohn H, Montenegro S, Aurelian J (2007) Sugarcane industry as a source of water pollution-Case study on the situation in Ipojuca River, Pernambuco, Brazil. Water Air Soil Pollut 180:261–269

    CAS  Article  Google Scholar 

  103. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  104. Hammerbeck AL, Stetson SJ, Osborne SL, Schumacher TE, Pikul JL (2012) Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci Soc Am J 76:1390–1398. doi:10.2136/sssaj2011.0421

    CAS  Article  Google Scholar 

  105. Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Sci 342:850–853. doi:10.1126/science.1244693

    CAS  Article  Google Scholar 

  106. Harper RJ, Sochacki SJ, Smettem KRJ, Robinson N (2010) Bioenergy feedstock potential from short-rotation woody crops in a dryland environment. Energy Fuels 24:225–231

    CAS  Article  Google Scholar 

  107. Harpole S, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Let 14:852–862

    Article  Google Scholar 

  108. Hastings AF, Wattenbach M, Eugster W, Li CS, Buchmann N, Smith P (2010) Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site. Agric Ecosyst Environ 136:97–110

    CAS  Article  Google Scholar 

  109. Hazlett PW, Morris DM, Fleming RL (2014) Effect of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Sci Soc Am J 78:S183–S195

    Article  Google Scholar 

  110. Heilman P, Norby RJ (1998) Nutrient cycling fertility management in temperate short rotation forest systems. Biomass Bioenergy 14:361–370

    CAS  Article  Google Scholar 

  111. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. http://www.worldclim.org/current. Accessed 6 June 2014

  112. Hilbert JA, Guerra V, Lopardo NCL (2014) Evolución de la percepción pública de los biocombustibles en Argentina Serie Informes técnicos bioenergía Año 3 Num 5 2014 ISBN/ISSN 978-987-521-498-9/2250-8481

  113. Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31:126–136

    CAS  Article  Google Scholar 

  114. Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA

  115. Huggins DR, Buyanovky GA, Wagner GH, Brown JR, Darmody RG, Peck TR, Lesoing GW, Vanotti MB, Bundy LG (1998) Soil organic C in the tallgrass prairie-derived region of the cornbelt: effects of long-term crop management. Soil Tillage Res 47:219–234

    Article  Google Scholar 

  116. Ice GG (2004) History of innovative best management practice development and its role in addressing water quality limited waterbodies. J Environ Eng 130:684–689

    CAS  Article  Google Scholar 

  117. Ice GG, Schilling E, Vowell J (2010) Trends for forestry best management practices implementation. J For 108:267–273

    Google Scholar 

  118. Ingestad T (1974) Towards optimum fertilization. Ambio 3:49–54

    Google Scholar 

  119. Insam H, Knapp BA (eds) (2011) Recycling of biomass ashes. Springer, New York

    Google Scholar 

  120. IPCC (2011) Summary for Policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  121. Izaurralde RC, Williams JR, McGill WB, Rosenberg NJ, Quiroga Jakas MC (2006) Simulation soil C dynamics with EPIC: model description and testing against long-term data. Ecol Model 192:362–384

    Article  Google Scholar 

  122. Janssen R, Rutz DD (2011) Sustainability of biofuels in Latin America: risks and opportunities. Energy Policy 39:5717–5725

    Article  Google Scholar 

  123. Janzen HH, Johnston AM, Carefoot JM, Lindwall CW (1997) Soil organic matter dynamics in long-term experiments in Sothern Alberta. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, FL, pp 283–296

    Google Scholar 

  124. Janzen HH, Campbell CA, Izaurralde RC, Ellert BH, Juma NG, McGill WB, Zentner RP (1998) Management effects on soil C storage on the Canadian prairies. Soil Tillage Res 47:181–195

    Article  Google Scholar 

  125. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187

    Article  Google Scholar 

  126. Jemison GM, Lowden MS (1974) Management and research implications. In: Cramer OP (ed) Environmental effects of forest residues management in the Pacific Northwest—a state-of-knowledge compendium. USDA For Serv Gen Tech Rep PNW-24, pp A1–A33

  127. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    CAS  Article  Google Scholar 

  128. Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller W, Weeber RC, McNicol DK, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The widespread threat of calcium decline in fresh waters. Science 322:1374–1377

    CAS  Article  Google Scholar 

  129. Jeziorski A, Tanentzap AJ, Yan ND, Paterson AM, Palmer ME, Korosi JB, Rusak JA, Arts MT, Keller W, Ingram R, Cairns A, Smol JP (2015) The jellification of north temperate lakes. Proc R Soc B 282:20142449

    Article  Google Scholar 

  130. Jin VL, Baker JM, Johnson JMF, Karlen DL, Lehman RM, Osborne SL, Sauer TJ, Stott DE, Varvel GE, Venterea RT, Schmer MR, Wienhold BJ (2014) Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US Corn Belt. Bioenergy Res. doi:10.1007/s12155-014-9421-0

    Google Scholar 

  131. Johnson DW (1994) Reasons for concern over impacts of harvesting. In: Dyck WJ, Cole DW, Comerford NB (eds) Impacts of forest harvesting on long-term site productivity. Chapman and Hall, London, pp 1–12

    Google Scholar 

  132. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Article  Google Scholar 

  133. Johnson DW, Todd DE (1998) The effects of harvesting on long-term changes in nutrient pools in a mixed oak forest. Soil Sci Soc Am J 62:1725–1735

    CAS  Article  Google Scholar 

  134. Johnson DW, West DC, Todd DE, Mann LK (1982) Effects of sawlog vs whole-tree harvesting on the nitrogen, phosphorus, potassium, calcium budgets of an upland mixed oak forest. Soil Sci Soc Am J 46:1304–1309

    CAS  Article  Google Scholar 

  135. Johnson DW, Binkley D, Conklin P (1995) Simulated effects of atmospheric deposition, harvesting, and species change on nutrient cycling in a loblolly pine forest. For Ecol Manag 76:29–45

    Article  Google Scholar 

  136. Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    CAS  Article  Google Scholar 

  137. JRC European Soil Portal (2010) Climatic zone for Commission Decision of 10 June 2010. http://eusoils.jrc.ec.europa.eu/projects/RenewableEnergy/. Accessed 1 May 2014

  138. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res 31:149–167. doi:10.1016/0167-1987(94)90077-9

    Article  Google Scholar 

  139. Keeney DR (1982) Nitrogen management for maximum efficiency and minimum pollution. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agron Monogr 22:605–649. doi:10.2134/agronmonogr22.c16

  140. Kimmins JP (1974) Sustained yield, timber mining and the concept of ecological rotation; a British Columbian view. For Chron 50:27–31

    Article  Google Scholar 

  141. Kimmins JP, Mailly D, Seely B (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Model 122:195–224

    Article  Google Scholar 

  142. Kimmins JP, Welham C, Seely B et al (2005) Science in forestry: why does it sometimes disappoint or even fail us? Forestry 81:723–734

    Google Scholar 

  143. Kimmins JP, Blanco JA, Seely B, Welham C (2008) Complexity in modeling forest ecosystems; how much is enough? For Ecol Manag 256:1646–1658

    Article  Google Scholar 

  144. Kimsey M Jr, Page-Dumroese D, Coleman M (2011) Assessing bioenergy harvest risks: geospatially explicit tools for maintaining soil productivity in western US Forests. Forests 2:797–813

    Article  Google Scholar 

  145. Kleinman PJA (2005) Phosphorus: agriculture and the environment:1021–1068. doi:10.2134/agronmonogr46.c31

  146. Kotak BG, Prepas EE, Hrudey SE (1994) Blue green algal toxins in drinking water supplies: research in Alberta. Limnol Oceanogr 36:251–267

    Google Scholar 

  147. Kowalik PJ, Randerson PF (1994) Nitrogen and phosphorus removal by willow stands irrigated with municipal waste water—a review of the Polish experience. Biomass Bioenergy 6:133–139

    Article  Google Scholar 

  148. Kranabetter JM, Sanborn P, Chapman BK, Dube S (2006) The contrasting response to soil disturbance between lodgepole pine and hybrid white spruce in subboreal forests. Soil Sci Soc Am J 70:1591–1599

    CAS  Article  Google Scholar 

  149. Laflen J, Colvin T (1981) Effect of crop residue on soil loss from continuous row cropping. Trans ASAE 24:605–609

    Article  Google Scholar 

  150. Lal R (1997) Soils of the tropics and their management for plantation forestry. In: Nambiar EKS, and Brown AG (eds) Management of soil, nutrients and water in tropical plantation forests. ACIAR Monograph No. 43, Canberra ACT, Australia, pp xii + 571

  151. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:275–584. doi:10.1016/j.envint.2004.09.005

    Article  CAS  Google Scholar 

  152. Lal R (2007) Biofuel from crop residue. Soil Tillage Res 93:237–238

    Article  Google Scholar 

  153. Lal R, Kimble J, Follett RF, Stewart BA (1998) Soil processes and the carbon cycle. CRC/Lewis Publishers, Boca Raton, FL

    Google Scholar 

  154. Lamers P, Junginger M, Hamelinck C, Faaij A (2012) Developments in international solid biofuel trade—an analysis of volumes, policies, and market factors. Renew Sust Energy Rev 16:3176–3199

    Article  Google Scholar 

  155. Landsberg JJ, Johnsen KH, Albaugh TJ, Allen HL, McKeand SE (2001) Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments. For Sci 47(1):43–51

    Google Scholar 

  156. Larson WE (1979) Crop residue: energy production or erosion control? Soil Con Soc Am. Special Publication No. 25, Ankeny, IA, p 28

  157. Lawrence GB, David MB, Bailey SW, Shortle WC (1997) Assessment of calcium status in soils of red spruce forests in the northeastern United States. Biogeochemistry 38:19–39

    CAS  Article  Google Scholar 

  158. Lawton LA, Codd GA (1991) Cyanobacterial (blue–green algae) toxins and their significance in UK and European waters. J Inst Water Environ Manag 5:460–465

    CAS  Article  Google Scholar 

  159. Layton JB, Skidmore EL, Thompson CA (1993) Winter-associated changes in dry-soil aggregation as influenced by management. Soil Sci Soc Am J 57:1568–1572

    Article  Google Scholar 

  160. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  Google Scholar 

  161. Lemke RL, Izaurralde RC, Nyborg M, Solberg ED (1999) Tillage and N-source influence soil-emitted nitrous oxide in the Alberta Parkland region. Can J Soil Sci 79:15–24

    CAS  Article  Google Scholar 

  162. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180

    CAS  Article  Google Scholar 

  163. Li Q, Allen HL (2003) Nitrogen mineralization dynamics following the establishment of a loblolly pine plantation. Can J For Res 33:364–374

    CAS  Article  Google Scholar 

  164. Liang Y, Gollany HT, Rickman RW, Albrecht SL, Follett RF, Wilhelm WW, Novak JM, Douglas CL Jr (2008) CQESTR Simulation of management practice effects on long-term soil organic carbon. Soil Sci Soc Am J 72:1486–1492

    CAS  Article  Google Scholar 

  165. Liang Y, Gollany HJ, Rickman RW, Albrecht SL, Follett RF, Wilhelm WW, Novak JM, Douglas CL Jr (2009) Simulating soil organic matter with CQESTR (v. 2.0): model description and validation against long-term experiments across North America. Ecol Model 220:568–581

    Article  Google Scholar 

  166. Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in Northwestern USA and Western Canada. Soil Tillage Res 83:25–52

    Article  Google Scholar 

  167. Linden DR, Clapp CE, Dowdy RH (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res 56:167–174

    Article  Google Scholar 

  168. Lindstrom MJ (1986) Effects of residue harvesting on water runoff, soil erosion and nutrient loss. Agric Ecosyst Env 16:103–112

    Article  Google Scholar 

  169. Lowdermilk WC (1953) Conquest of the land through seven thousand years. USDA, SCS Agric. Inform. Bull, p 99

  170. Lundborg A (1997) Reducing the nitrogen load: whole-tree harvesting. A literature review. Ambio 26:387–393

    Google Scholar 

  171. Lupi AM, Conti M, Fernández R, Cosentino D, López G (2007) Efecto de las prácticas de repoblación forestal sobre el carbono orgánico del suelo y la estabilidad de los agregados en el noreste de Argentina. [Effect of reforestation practices on soil organic carbon and aggregate stability in northeastern Argentina. In Spanish with English abstract.] Investigación Agraria: Sistemas y Recursos Forestales 16:230–240

  172. Lupi AM, Aparicio J, Boca T, Díaz D, de los Ángeles García, M, Ingaramo L, Quintero C, Boschetti G (2011) Manejo del fósforo en sitios contrastantes de la región Mesopotámica Argentina bajo uso forestal. [Management of phosphorus in contrasting sites in the Mesopotamian region of Argentina under forestry. In Spanish.] IPNI, Informaciones Agronómicas No. 4:7–13

  173. Machado S (2011) Soil organic carbon dynamics in the Pendleton long-term experiments: implication for biofuel production in Pacific Northwest. Agron J 103:253–260

    Article  Google Scholar 

  174. Mahmood-ul-Hassan M, Rafique E, Rashid A (2013) Physical and hydraulic properties of aridisols as affected by nutrient and crop-residue management in a cotton-wheat system. Acta Sci-Agron 35:127–137. doi:10.4025/actasciagron.v35i1.14683

    CAS  Article  Google Scholar 

  175. Malhi SS, Lemke R (2007) Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil Tillage Res 96:269–283. doi:10.1016/j.still.2007.06.011

    Article  Google Scholar 

  176. Malhi SS, Lemke R, Wang ZH, Chhabra BS (2006) Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality and greenhouse gas emissions. Soil Tillage Res 90:171–183. doi:10.1016/j.still.2005.09.001

    Article  Google Scholar 

  177. Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosys Env 89:149–166

    Article  Google Scholar 

  178. Marín-Spiotta E, Sharma S (2013) Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Eco Biogeogr 22:105–117

    Article  Google Scholar 

  179. Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S (2014) Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, pp 1499–1566

    Google Scholar 

  180. Martinelli LA, Filoso S (2008) Expansion of sugarcane ethanol expansion in Brazil: environmental and social challenges. Ecol Appl 18:885–898

    Article  Google Scholar 

  181. Maynard DG, Paré D, Thiffault E, Lafleur B, Hogg KE, Kishchuk B (2014) How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ Rev 22:161–178

    CAS  Article  Google Scholar 

  182. McBride AC, Dale VH, Baskaran LM, Downing ME, Eaton LM, Efroymson RA, Garten CT Jr, Kline KL, Jager HI, Mulholland PJ, Parish ES, Schweizer PE, Storey JM (2011) Indicators to support environmental sustainability of bioenergy systems. Ecol Indic 11:1277–1289

    Article  Google Scholar 

  183. Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96

    CAS  Article  Google Scholar 

  184. Milài Canals L, Bauer C, Depestele J, Dubreuil A, Knuchel Freiermuth R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J LCA 12:5–15

    Article  Google Scholar 

  185. Miner GL, Hansen NC, Inman D, Sherrod LA, Peterson GA (2013) Constraints of no-till dryland agroecosystems as bioenergy production ystems. Agron J 105:364–376

    Article  Google Scholar 

  186. Moebius-Clune BN, van Es HM, Idowu OJ, Schindelbeck RR, Moebius-Clune DJ, Wolfe DW, Abawi GS, Thies JE, Gugino BK, Lucey R (2008) Long-term effects of harvesting maize stover and tillage on soil quality. Soil Sci Soc Am J 72:960–969

    CAS  Article  Google Scholar 

  187. Mohamoud YM, Ewing LK (1990) Rainfall interception by corn and soybean residue. Trans ASAE 33:507–511

    Article  Google Scholar 

  188. Molina JAE, Clapp CE, Shaffer MJ, Chichester FW, Larson WE (1983) NCSOIL, a model of nitrogen transformations in soil: description, calibration and behavior. Soil Sci Soc Am J 47:85–91

    CAS  Article  Google Scholar 

  189. Molina JAE, Crocker GJ, Grace PR, Klír J, Körschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models. Geoderma 81:91–107

    Article  Google Scholar 

  190. Morachan YB, Moldenha WC, Larson WE (1972) Effects of increasing amounts organic residues on continuous corn. 1. Yields and soil physical properties. Agron J 64:199–203

    Article  Google Scholar 

  191. Muth DJ Jr, McCorkle DS, Koch JB, Bryden KM (2012) Modeling sustainable agricultural residue removal at the subfield scale. Agron J 104:970–981. doi:10.2134/agronj2012.0024

    Article  Google Scholar 

  192. Muyibi SA, Ambali AR, Eissa GS (2008) Development-induced water pollution in Malaysia: policy implications from an econometric analysis. Water Policy 10:193–206

    Article  Google Scholar 

  193. Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866

    Article  Google Scholar 

  194. Nelson RG (2002) Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 22:349–363

    Article  Google Scholar 

  195. Nogueira EM, Yanai AM, Fonseca FOR, Fearnside PM (2015) Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Glob Chang Biol 21:1271–1292. doi:10.1111/gcb.12798

    Article  Google Scholar 

  196. O’Connell AM, Grove TS, Mendham DS, Rance SJ (2004) Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia. Soil Biol Biochem 36:39–48

    Article  CAS  Google Scholar 

  197. Oberholzer H-R, Freiermuth Knuchel R, Weisskopf P, Gaillard G (2012) A novel method for soil quality in life cycle assessment using several soil indicators. Agron Sustain Dev 32:639–649

    Article  Google Scholar 

  198. Oechel WC, Vourlitis GL (1995) Effects of global change on carbon storage in cold soils. In: Lal R et al (eds) Soils global change. CRC Press, Boca Raton, Fl, pp 177–187

    Google Scholar 

  199. OMNRF (2015) Forest management guide to silviculture in the Great Lakes-St. Lawrence and Boreal Forests of Ontario. Queen’s Printer for Ontario, Toronto, p 394

    Google Scholar 

  200. Page-Dumroese DS, Jurgensen MF, Tiarks AE, Ponder F Jr, Sanchez FG, Fleming RL, Kranabetter JM, Powers RF, Stone DM, Elioff JD, Scott DA (2006) Soil physical property changes at the North American Long-Term Soil Productivity study sites: 1 and 5 years after compaction. Can J For Res 36:551–564

    Article  Google Scholar 

  201. Paine L, Peterson T, Undersander D, Rineer K, Bartelt G, Temple S, Sample D, Klemme R (1996) Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy 10:231–242

    Article  Google Scholar 

  202. Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European Soil Data Centre (ESDAC): response to European policy support and public data requirements. Land Use Policy 29:329–338

    Article  Google Scholar 

  203. Parr JF, Papendick RI (1978) Crop residue management systems: New perspectives for soil, water, and energy conservation. Crop residue management systems. ASA Special Publication 31. Oschwald WR, Stelly M, Kral DM and Nauseef JH ASA-CSSA-SSSA, Inc. Madison, WI

  204. Parton WJ (1996) The CENTURY model. In: Powlson DS, et al (eds) Evaluation of soil organic matter models. NATO ASI Series I, vol 38. Springer, Berlin, pp 283–291

  205. Parton WJ, Ojima DS, Schimel DS (1996) Models to evaluate soil organic matter storage and dynamics. In: Martin RC, Stewart BA (eds) Structure and organic matter storage in agricultural soil. CRC Press, Boca Raton, FL, pp 421–449

    Google Scholar 

  206. Paustain K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Paustian K, Elliot ET, Cole CV (eds) Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, FL, pp 15–49

    Google Scholar 

  207. Paustian K, Elliot ET, Killian K (1998) Modeling soil carbon in relation to management and climate change in some agroecosystems in Central North America. In: Lal R, Kimble J, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC/Lewis Publishers, Boca Raton, FL, pp 459–471

    Google Scholar 

  208. Peckham SD, Perry CH, Wilson BT, Stueve KM (2013) Modeling harvest and biomass removal effects on the forest carbon balance of the Midwest, USA. Environ Sci Policy 25:22–35

    Article  Google Scholar 

  209. Perdue JH, Young TM, Rials TG (2011) The Biomass Site Assessment Tool—BioSAT. Final Report for U.S. Forest Service, Southern Research Station submitted by The University of Tennessee, Knoxville, p 282

  210. Peterson GA, Halvorson AD, Havlin JL, Jones OR, Lyon DJ, Tanaka DL (1998) Reduced tillage and increased cropping intensity in the Great Plains conserves soil C. Soil Tillage Res 47:207–218

    Article  Google Scholar 

  211. Piatek KB, Allen HL (2001) Are forest floors in mid-rotation stands of loblolly pine (Pinus taeda) a sink for nitrogen and phosphorus? Can J For Res 31:1164–1174

    CAS  Article  Google Scholar 

  212. Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79:563–588. doi:10.1093/forestry/cpl041

    Article  Google Scholar 

  213. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Chang Biol 17:2415–2427

    Article  Google Scholar 

  214. Ponder F, Fleming RL, Berch S, Busse MD, Elioff JD, Hazlett P, Kabzems RD, Kranabetter JM, Morris DM, Page-Dumroese D, Palik BJ, Powers RF, Sanchez FG, Scott DA, Stagg RH, Stone DM, Young DH, Zhang J, Ludovici KH, McKenney DW, Mossa DS, Sanborn PT, Voldseth RA (2012) Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons. For Ecol Manag 278:35–54

    Article  Google Scholar 

  215. Power JF, Doran JW (1988) Role of crop residue management in nitrogen cycling and use, In: Hargrove WL, et al (eds) Cropping strategies for efficient use of water and nitrogen, Special Publication No. 51. ASA-CSSA-SSSA, Madison, WI, pp 101–113

  216. Power JF, Wiese R, Flowerday D (2001) Managing farming systems for nitrate control: a research review from management systems evaluation areas. J Environ Qual 30:1866–1880. doi:10.2134/jeq2001.1866

    CAS  Article  Google Scholar 

  217. Powers RF (2006) Long-Term Soil Productivity: genesis of the concept and principles behind the program. Can J For Res 36:519–528

    CAS  Article  Google Scholar 

  218. Powers RF, Scott DA, Sanchez FG et al (2005) The North American long-term soil productivity experi-ment: findings from the first decade of research. For Ecol Manag 220:31–50

    Article  Google Scholar 

  219. Powlson DS, Glendining MJ, Coleman K, Whitmore AP (2011) Implications for soil properties of removing cereal straw: results from long-term studies. Agron J 103:279–287. doi:10.2134/agronj2010.0146s

    CAS  Article  Google Scholar 

  220. Prescott CE, Maynard DG, Laiho R (2000) Humus in northern forests: friend or foe? For Ecol Manag 133:23–36

    Article  Google Scholar 

  221. Proe MF, Rauscher HM, Yarie J (1994) Computer simulation models and expert systems for predicting productivity decline. In: Dyck WJ, Cole DW (eds) Impacts of forest harvesting on long-term site productivity. Chapman & Hall, New York, pp 151–186

    Google Scholar 

  222. Ptacnik R, Jenerette GD, Verschoor AM, Huberty AF, Solimini AG, Brookes JD (2005) Applications of ecological stoichiometry for sustainable acquisition of ecosystem services. Oikos 109:52–62

    Article  Google Scholar 

  223. Rasmussen PE, Albrecht SL (1998) Crop management effects on organic carbon in semi-arid Pacific Northwest soils. In: Lal (ed) Management of carbon sequestration in soil. CRC Press, Boca Raton, FL, pp 209–219

    Google Scholar 

  224. REN21 (2014) Renewables 2014 Global Status Report. REN21 (Renewable Energy Policy Network for the 21st Century) Secretariat Paris, France

  225. Rennie PJ (1979) Intensive forest production—nutrient cycling as its key process. In: Leaf AL (ed) Symposium on the impact of intensive harvesting on forest nutrient cycling, U.S. Forest Service N.E. For. Exp. Sta., Bromell, PA; US DOE, fuels from biomass systems; and State University of New York, College of Environmental Science and Forestry, Syracuse, New York, pp 361–365

  226. Rickman R, Douglas C, Albrecht S, Berc J (2002) Tillage, crop rotation, and organic amendment effect on changes in soil organic matter. Environ Pollut 116:405–411

    CAS  Article  Google Scholar 

  227. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–1067

    Article  Google Scholar 

  228. Robertson GP, Bruuslsema TW, Gehl RJ, Kanter D, Mauzerall DL, Rotz CA, Williams CO (2013) Nitrogen-climate interaction in US agriculture. Biogeochemistry 114:41–70

    CAS  Article  Google Scholar 

  229. Roer JM, Shroyer JP, Paulsen GM (2000) Allelopathy of sorghum on wheat under several tillage systems. Agron J 92:855–860

    Article  Google Scholar 

  230. Running SW (1994) Testing FOREST-BGC ecosystem process simulations across a climatic gradient in Oregon. Ecol Appl 4:238–247

    Article  Google Scholar 

  231. Running SW, Gower ST (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications, II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160

    CAS  Article  Google Scholar 

  232. Rutz D, Janssen R, Rogat J, Borch K, Mittelbach M, Schober S, Vos J, Thebaud A, Ballesteros M, Manzanares P, St James C, Coelho ST, Guardabassi P, Aroca G, Soler L, Riegelhaupt E, Arias T, Masera O, Junquera M, Nadal G, Bravo G (2010) Research and technology development cooperation on biofuels between Europe and Latin America. In: Proceedings of the 18th European biomass conference and exhibition, 3–7 May 2010, Lyon, France, pp 2177–2187

  233. Sá JCM, Cerri CC, Lal R, Dick W, Piccolo MC, Feigl BE (2009) Soil organic carbon and fertility interactions affected by a tillage chronosequence in a Brazilian Oxisol. Soil Tillage Res 104:56–64

    Article  Google Scholar 

  234. Sainju UM (2014) Cropping sequence and nitrogen fertilization impact on surface residue, soil carbon sequestration, and crop yields. Agron J 106:1231–1242

    Article  CAS  Google Scholar 

  235. Sanchez FG (2001) Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. For Ecol Manag 152:85–96

    Article  Google Scholar 

  236. Sathre R, Gustavsson L, Bergh J (2010) Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization. Biomass Bioenergy 34:572–581

    CAS  Article  Google Scholar 

  237. Sauer TJ, Hatfield JL, Prueger JH (1996) Corn residue age and placement effects on evaporation and soil thermal regime. Soil Sci Soc J 60:1558–1564

    CAS  Article  Google Scholar 

  238. Sauer TJ, Hatfield JL, Prueger JH, Norman JM (1998) Surface energy balance of a corn residue-covered field. Agric For Meteorol 89:155–168

    Article  Google Scholar 

  239. Savabi MR, Stott DE (1994) Plant residue impact on rainfall interception. Trans ASAE 37:1093–1098

    Article  Google Scholar 

  240. Schmidt-Walter P, Lamersdorf NP (2012) Biomass production with willow and poplar short rotation coppices on sensitive areas—the impact on nitrate leaching and groundwater recharge in a dringing water catchment near Hanover, Germany. Bioen Res 5:546–562

    CAS  Article  Google Scholar 

  241. Schoenau JJ, Campbell CA (1996) Impact of crop residues on nutrient availability in conservation tillage systems. Can J Plant Sci 76:621–626

    CAS  Article  Google Scholar 

  242. Schoeneberger M, Bentrup G, de Gooijer H et al (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A–136A. doi:10.2489/jswc.67.5.128A

    Article  Google Scholar 

  243. Scott DA, Dean TJ (2006) Energy trade-offs between intensive biomass utilization, site productivity loss, and ameliorative treatments in loblolly pine plantations. Biomass Bioenergy 30:1001–1010

    Article  Google Scholar 

  244. Scott DA, Burger JA, Crane B (2006) Expanding site productivity research to sustain non-timber forest functions. For Ecol Manag 227:185–192

    Article  Google Scholar 

  245. Scull P, Franklin J, Chadwick OA, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27:171–197

    Article  Google Scholar 

  246. Seely B, Kimmins JP, Welham C, Scoullar K (1999) Management models: defining stand-level sustainability; exploring stand-level stewardship. J For 97:4–10

    Google Scholar 

  247. Smith CM, David MB, Mitchell CA, Masters MD, Anderson-Teixeira KJ, Bernacchi CJ, DeLucia EH (2013) Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J Environ Qual 42:219–228

    CAS  Article  Google Scholar 

  248. Snyder CS, Bruulsema TW, Jensen TL (2007) Greenhouse gas emissions from cropping systems and the influence of fertilizer management—a literature review. International Plant Nutrition Institute, Norcross, Georgia 25 p

    Google Scholar 

  249. Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects Ag. Ecosys Environ 133:247–266. doi:10.1016/j.agee.2009.04.021

    CAS  Article  Google Scholar 

  250. Soane BD (1990) The role of organic matter in soil compactibility: a review of some practical aspects. Soil Tillage Res 16:179–201

    Article  Google Scholar 

  251. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi:10.1016/S0065-2113(10)05002-9

    CAS  Article  Google Scholar 

  252. Staricka J, Allmaras RR, Nelson WW (1991) Spatial variation of crop residue incorporation by tillage. Soil Sci Soc Am J 55:1668–1674

    Article  Google Scholar 

  253. Stone EL (1975) Soil and man’s use of forest land. In: Bernier B, Winget CH (eds) For. Soils For. L. Manag. Proc. Fourth North Am. For. Soils Conf. Les Presses De L’Universite Laval, Laval, Quebec, pp 1–9

  254. Stone EL (1979) Nutrient removals by intensive harvest—some research gaps and opportunities. In: Leaf AL (ed) Symposium on the Impact of Intensive Harvesting on Forest Nutrient Cycling, U.S. Forest Service N.E. For. Exp. Sta., Bromell, PA; US DOE, Fuels from Biomass Systems; and State University of New York, College of Environmental Science and Forestry, Syracuse, New York, pp 366–386

  255. Taylor HM, Burnett E (1964) Influence of soil strength on root-growth habits of plants. Soil Sci 98:174–180

    Article  Google Scholar 

  256. Tester CF (1990) Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci Soc Am J 54:827–831

    CAS  Article  Google Scholar 

  257. Thiffault E, Paré D, Bélanger N, Munson A, Marquis F (2006) Harvesting intensity at clear-felling in the boreal forest: impact on soil and foliar nutrient status. Soil Sci Soc Am J 70:691–701

    CAS  Article  Google Scholar 

  258. Thiffault E, Bélanger N, Paré D, Hendershot WH, Munson A (2007) Investigating the soil acid-base status in managed boreal forests using the SAFE model. Ecol Model 206:301–321

    CAS  Article  Google Scholar 

  259. Thiffault E, Hannam K, Paré D, Titus B, Hazlett P, Maynard D, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ Rev 19:278–309

    Article  CAS  Google Scholar 

  260. Thiffault E, Barrette J, Paré D, Titus BD, Keys K, Morris DM, Hope G (2014) Developing and validating indicators of site suitability for forest harvesting residue removal. Ecol Indic 43:1–18

    Article  Google Scholar 

  261. Tiarks A, Nambiar EKS, Cossalter C (1998) Site management and productivity in tropical forest plantations—impacts on soils and options for management over successive rotations. CIFOR Occasional Paper No. 16

  262. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  Article  Google Scholar 

  263. Titus BD, Smith CT, Puddister D, Richardson JR, Young C (2008) Notes from facilitated discussions. Workshop on The Scientific Foundation for Sustainable Forest Biomass Harvesting Guidelines and Policies, Toronto, Ontario, 18–21 Feb 2008, p 48

  264. Troeh FR, Hobbs JA, Donahue RL (1980) Soil and water conservation for Productivity and environmental protection. Prentic-Hall Inc, Englewood Cliffs, New Jersey, p 718

    Google Scholar 

  265. Ulloa J, Villacura L (2005) Contribution of a private poplar industry in Chile to sustainable rural development. Unasylva 221:2–17

    Google Scholar 

  266. USDA ARS (2015) US Department of Agriculture, Agricultural Research Service Data Portal. http://nrrc.ars.usda.gov/arsdataportal/#/Home. Accessed 15 April 2015

  267. Vadeboncoeur MA (2010) Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Can J For Res 40:1766–1780. doi:10.1139/X10-127

    CAS  Article  Google Scholar 

  268. Vance ED (1996) Land application of wood-fired and combination boiler ashes: an overview. J Environ Qual 25:937–944. doi:10.2134/jeq1996.00472425002500050002x

    CAS  Article  Google Scholar 

  269. Vance ED (2000) Agricultural site productivity: principles derived from long-term experiments and their implications for intensively managed forests. For Ecol Manag 138:369–396

    Article  Google Scholar 

  270. Vance ED, Aust WM, Froese RE, Harrison RB, Morris LA (2014) Biomass harvesting and soil productivity: is the science meeting our policy needs? Soil Sci Soc Am J (posted 17 Jan 2014). doi:10.2136/sssaj2013.08.0323

  271. Venterea RT, Burger M, Spokas KA (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J Environ Qual 34:1467–1477

    CAS  Article  Google Scholar 

  272. Vitosh ML, Lucas RE, Silva GH (1997) Long-term effects of fertilizer and manure on corn yield, soil carbon and other soil chemical properties in Michigan. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, FL, pp 129–139

    Google Scholar 

  273. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi:10.1007/BF0000277

    Article  Google Scholar 

  274. Wall A (2012) Risk analysis of effects of whole-tree harvesting on site productivity. For Ecol Manag 282:175–184

    Article  Google Scholar 

  275. Wang Y-P, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi:10.1029/2009GL041009

    Article  CAS  Google Scholar 

  276. Wei X, Liu W, Waterhouse J, Armleder M (2000) Simulations on impacts of different management strategies on long-term site productivity in lodgepole pine forests of the central interior of British Columbia. For Ecol Manag 133:217–229

    Article  Google Scholar 

  277. Wiegmann K, Hennenberg KJ, Fritsche UR (2008) Degraded land and sustainable bioenergy feedstock production. Issue Paper—Joint International Workshop on High Nature Value Criteria and Potential for Sustainable Use of Degraded Lands, Paris, June 30—July 1, 2008

  278. Wilhelm WW, Doran JW, Power JF (1986) Corn and soybean yield response to crop residue management under no-tillage production systems. Agron J 78:184–189

    Article  Google Scholar 

  279. Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96:1–17

    Article  Google Scholar 

  280. Wilhelm WW, Hess JR, Karlen DL, Johnson JMF, Muth DJ, Baker JM, Gollany HT, Novak JM, Stott DE, Varvel GE (2010) Review: balancing limiting factors and economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Indus Biotech 6:271–287

    Article  Google Scholar 

  281. Williams JR, Izaurralde RC (2006) The APEX model. In: Singh VP, Frevert DK (eds) Watershed models. CRC Press, Boca Raton, Fl, pp 437–482

    Google Scholar 

  282. Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 27:129–144

    Article  Google Scholar 

  283. Williams BK, Szaro RC, Shapiro CD (2009) Adaptive Management: The U.S. Department of the Interior Technical Guide. Adaptive Management Working Group, U.S. Department of the Interior, Washington, DC

  284. Wilts AR, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci Soc Am J 68:1342–1351

    CAS  Article  Google Scholar 

  285. Wood TE, Cavaleri MA, Reed SC (2012) Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes. Biol Rev 87:912–927

    Article  Google Scholar 

  286. World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford, p 383

    Google Scholar 

  287. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch A, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    CAS  Article  Google Scholar 

  288. Wu Y, Liu SG (2012) Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass Bioenergy 36:182–191

    CAS  Article  Google Scholar 

  289. Zhou X, Helmers M, Asbjornsen H, Kolka R (2010) Perennial strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion. J Environ Qual 39:2006–2015

    CAS  Article  Google Scholar 

  290. Ziegler AD, Phelps J, Yuen JQ, Webb EL, Lawrence D, Fox JM, Koh LP (2012) Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD + policy implications. Glob Chang Biol 18:3087–3099

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support in part by the U.S. National Science Foundation grant CBET-1140152 “RCN-SEES: A Research Coordination Network on Pan American Biofuels and Bioenergy Sustainability”. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. We thank reviewers for helpful comments and suggestions. This publication is based upon work supported by the U.S. Department of Agriculture-Agricultural Research Service under the ARS-GRACEnet and REAP projects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hero T. Gollany.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gollany, H.T., Titus, B.D., Scott, D.A. et al. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas. Environmental Management 56, 1330–1355 (2015). https://doi.org/10.1007/s00267-015-0536-7

Download citation

Keywords

  • Agroecosystem
  • Bioenergy feedstock
  • Carbon
  • Forestry
  • Soil
  • Sustainability