Skip to main content

Advertisement

Log in

The Potential of Algarrobo (Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Due to their multipurpose use, leguminous trees are desirable for the restoration of degraded ecosystems. Our aim was to investigate seed germination of the leguminous tree Prosopis chilensis in response to salinity, one of the major abiotic challenges of desertified soils. Germination percentages of seed from 12 wild P. chilensis populations were studied. Treatments included four aqueous NaCl concentrations (150, 300, 450, and 600 mM). In each population, the highest germination percentage was seen using distilled water (control), followed closely by 150 mM NaCl. At 300 mM NaCl or higher salt concentration, germination was progressively inhibited attaining the lowest value at 450 mM NaCl, while at 600 mM NaCl germination remained reduced but with large variation among group of samples. These results allowed us to allocate the 12 groups from where seeds were collected into three classes. First, the seeds from Huanta-Rivadavia showed the lowest percent germination for each salt condition. The second group was composed of moderately salt-tolerant seeds with 75 % germination at 300 mM NaCl, followed by 50 % germination at 450 mM NaCl and 30 % germination at 600 mM NaCl. The third group from Maitencillo and Rapel areas was the most salt tolerant with an impressive seed germination level of 97 % at 300 mM NaCl, 82 % at 450 mM NaCl, and 42 % at 600 mM NaCl. Our results demonstrate that P. chilensis seeds from these latter localities have an increased germination capability under saline stress, confirming that P. chilensis is an appropriate species to rehabilitate desertified soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adolf VI, Jacobsen S-E, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54

    Article  CAS  Google Scholar 

  • Agresti A (2002) Categorical data analysis, 2nd edn. John Wiley and Sons, New York, p 710

    Book  Google Scholar 

  • Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231(2):243–254

    Article  CAS  Google Scholar 

  • Al-Ansari F (2002) Effects of underground saline water of the UAE on seed germination, seedling growth and chemical constituents of Prosopis tamarugo. Pak J Appl Sci 2(11):1018–1021

    Article  Google Scholar 

  • Andrade L, Fabricante J, Oliveira F (2009) Invasão biológica por Prosopis juliflora (Sw.) DC.: impactos sobre a diversidade e a estrutura do componente arbustivo-arbóreo da caatinga no estado do Rio Grande do Norte, Brasil. Acta Botanica Brasilica 23:935–943

    Article  Google Scholar 

  • Araújo SA, Silveira JAG, Almeida TD, Rocha I, Morais DL, Viégas RA (2006) Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. Revista Brasileira de Engenharia Agrícolae Ambiental 10:848–854

    Article  Google Scholar 

  • Arce P, Balboa O (1988) Some aspects of the biology of Prosopis growing in Chile. In: Habit MA (ed) The current state of knowledge on Prosopis juliflora. Roma, FAO, pp 313–322

    Google Scholar 

  • Avilés R (2012) Acta Sesión N° 8. Novenos proceso clasificación. Ministerio de Medio Ambiente. 17 p

  • Bekki A, Trinchant J-C, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71(1):61–67

    Article  CAS  Google Scholar 

  • Beritognolo I, Piazzai M, Benucci S, Kuzminsky E, Sabatti M, Scarascia Mugnozza G, Muleo R (2007) Functional characterization of three Italian Populus alba L. genotypes under salinity stress. Trees 21:465–477

    Article  Google Scholar 

  • Blun A (1998) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Bojović B, Đelić G, Topuzović M, Milan Stanković (2010) Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae. Kragujev J Sci 32:83–87

    Google Scholar 

  • Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25

    Article  Google Scholar 

  • CAAP (2010) Capítulo 5—Suelos. In: Estado del Medio Ambiente en Chile 2008. Instituto de Centros Públicos. Centro de Análisis de Políticas Públicas. Gobierno de Chile/PNUMA/CEPAL, p 255

  • Campos C, Ojeda R (1997) Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. J Arid Environ 35:707–714

    Article  Google Scholar 

  • Casanova M, Vera W, Salazar O, Luzio W (2004) Edafología, Guía de clases prácticas. Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, p 74

    Google Scholar 

  • Catalán L, Balzarini M (1992) Improved laboratory germination conditions for several arboreal Prosopis species: P. chilensis, P. flexuosa, P. nigra, P.alba, P. caldenia and P. affinis. Seed Sci Technol 20:293–298

    Google Scholar 

  • Catalán L, Balzarini M, Talesnik E, Sereno R, Karlin U (1994) Effects of salinity on germination and seedling growth of Prosopis flexuosa (D.C.). For Ecol Manag 63:347–357

    Article  Google Scholar 

  • Cazebonne C, Vega A, Varela D, Cardemil L (1999) Salinity effects on germination and growth of Prosopis chilensis. Revista Chilena Hist Nat 72:83–91

    Google Scholar 

  • Chapin FS III, Sala OE, Huber-Sannwald E (2001) Global biodiversity in a changing environment: scenarios for the 21st century. Springer-Verlag, New York, p 376

    Book  Google Scholar 

  • CIREN (2011) Determinación de la erosión actual y potencial del territorio de Chile. http://www.ciren.cl/cirenxml/noticias/default.asp?a=5&id=647. Accessed 25 Feb 2013

  • Comisión Nacional de Energía (CNA) (2009) Modelación del Recurso Solar y Eólico en el Norte de Chile. Gobierno de Chile, p 21

  • Contreras B (1983) Diversidad Morfológica en poblaciones de algarrobo (Prosopis chilensis (Mol) Stuntz ) en la IV Región. Dissertation, Universidad de Chile, Chile, p 105

  • Cony MA, Trione SO (1998) Inter and intraespecific variability in Prosopis flexuosa and P. chilensis: seed germination under salt and moisture stress. J Arid Environ 40:307–317

    Article  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41(4):758–769

    Article  CAS  Google Scholar 

  • Dash M, Panda SK (2014) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungoo seeds. Biol Plant 44(4):587–589

    Article  Google Scholar 

  • Delatorre-Herrera J, Pinto M (2009) Importance of ionic and osmotic componentes of salts stress on the germination of four quinua (Chenopodium quinoa Willd.) selections. Chilean. J Agric Res 69(4):477–485

    Google Scholar 

  • Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23(11):547–552

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Shanker AK, Devi DD (2006) Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284:363–373

    Article  CAS  Google Scholar 

  • Doussolin E, Quezada C (2006) Introducción al problema de los suelos de las zonas áridas, 1st edn. Departamento de suelos y recursos naturales, Facultad de Agronomía, Universidad de Concepción, Concepción

    Google Scholar 

  • Dupont L, Alloing G, Pierre O, El Msehli S, Hopkins J, Hérouart D, Frendo P (2012) The Legume Root Nodule: From Symbiotic Nitrogen Fixation to Senescence, Senescence, Dr. Tetsuji Nagata (Ed.), ISBN: 978-953-51-0144-4, InTech. http://www.intechopen.com/books/senescence/the-legume-root-nodule-from-symbiotic-nitrogen-fixation-tosenescence

  • El-Keblawy A, Al-Rawai A (2005) Effects of salinity, temperatura and light on germination of invasive Prosopis juliflora (Sw.) D.C. J Arid Environ 61:555–565

    Article  Google Scholar 

  • Fang S-Z, Song L-Y, Fu X-X (2006) Effects of NaCl stress on sewed germination, leaf gas exchange and seedling growth of Pteroceltis tatarinowii. J For Res 17(3):185–188

    Article  CAS  Google Scholar 

  • Felker P, Clark PR, Laag AE, Fratt PF (1981) Salinity tolerance of the tree legumes: mesquite (Prosopis glandulosa var. torreyana, P. velutina and P. articulata) algarrobo (P. chilensis), kiawe (P. pallida) and tamarugo (P. tamarugo) grown in sand culture on nitrogen-free media. Plant Soil 61:311–317

    Article  Google Scholar 

  • Galera MF (2000) Las especies del género Prosopis (algarrobos) de América Latina con especial énfasis en aquellas de interés económico. Ed. FAO. Córdoba, Argentina. ISBN 987-43-2577-1. http://www.fao.org/docrep/006/ad314s/ad314s00.HTM. Accessed 29 March 2013

  • González J, Prado F (1992) Germination in relation to salinity and temperature in Chenopodium quinoa (Willd.). Agrochimica 34(1-2):101–108

    Google Scholar 

  • Grattan SR, Grieve CM (1999) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli AM (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 203–229

    Google Scholar 

  • Gul B, Khan MA (2002) Seed germination of halophytes exposed to high salinity and temperature in the seed bank. In: Liu X, Liu M (eds) Halophytes utilization and regional sustainable development of agriculture. Meteorological Press of China, Beijing, pp 69–76

    Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    Article  CAS  Google Scholar 

  • Holmgren M, Scheffer M (2001) El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–159

    Article  Google Scholar 

  • Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt DA, Letnic M et al (2006a) Extreme climatic events shape arid and semiarid ecosystems. Front Ecol Environ 4:87–95

    Article  Google Scholar 

  • Holmgren M, López BC, Gutiérrez JR, Squeo FA (2006b) Herbivory and plant growth rate determine the success of ENSO-driven tree establishment in semi-arid South America. Glob Chang Biol 12:2263–2271

    Article  Google Scholar 

  • Hosseini S, Parsakhoo A, Naghavi H, Kiane S, Koohi S (2012) Effect of salt stress on germination and seedlings growth of Prosopis juliflora (Sw.). New For 43:45–55

    Article  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • IRRI (2006) International Rice Research Institute. Stress and disease tolerance. http://www.knowledgebank.irri.org/ricebreedingcourse/Breeding_for_salt_tolerance.htm. Accessed 29 March 2013

  • Jamil M, Rehman S, Rha ES (2014) Response of growth, PSII photochemistry and chlorophyll content to salt stress in four brassica species. Life Sci J 11(3):139–145

    CAS  Google Scholar 

  • Jeschke WD (1984) K+-Na+ exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. In: Staples RC (ed) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 37–66

    Google Scholar 

  • Kachout SS, Mansoura AB, Jaffel K, Leclerc JC, Rejeb MN, Ouerghi Z (2009) The effect of salinity on the growth of the halophyte Atriplex hortensis (chenopodiaceae). Appl Ecol Environ Res 7(4):319–332

    Article  Google Scholar 

  • Katembe WJ, Ungar IA, Mitchell JP (1998) Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann Bot 82:167–175

    Article  Google Scholar 

  • Khan MA, Gulzar S (2003) Light, salinity, and temperature effects on the seed germination of perennial grasses. Am J Bot 90(1):131–134

    Article  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2001) Seed germination characteristics of Halogeton glomeratus. Can J Bot 79:1189–1194

    Article  Google Scholar 

  • Khasa PD, Hamblingb B, Kernaghanb G, Fungc M, Ngimbib E (2001) Genetic variability in salt tolerance of selected boreal woody seedlings. For Ecol Manag 165:257–269

    Article  Google Scholar 

  • Kim SJ, Ko SH, Kang KY, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–302

    Article  CAS  Google Scholar 

  • Koohafkan AP (1996) Desertification, drought and their consequences. Sustainable Development Department (SD), Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/waicent/faoinfo/sustdev/EPdirect/EPan0005.htm. Accessed 10 March 2013

  • Läuchi A, Grattan SR (2007) Plant growth development under salinity stress. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, The Netherlands, pp 1–32

    Chapter  Google Scholar 

  • Li W, An P, Liu X, Khan MA, Tsuji W, Tanaka K (2008) The effect of light, temperature and bracteoles on germination of polymorphic seeds of Atriplex centralasiatica Iljin under saline conditions. Seed Sci Technol 36:325–338

    Article  Google Scholar 

  • Li Z-Y, Zhou J-H, Liang Y-M (2013) Dose-effect correlation of chloride de-icing salt on Euonymus japonicas. For Sci Pract 15(3):238–245

    Article  CAS  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile, p 316

    Google Scholar 

  • Luzio W (1994) Suelos, una vision actualizada del recurso. Publicaciones misceláneas agrícolas n° 38. Segunda Edición. Universidad de Chile. http://mazinger.sisib.uchile.cl/repositorio/lb/ciencias_agronomicas/miscelaneasagronomicas38/. Accessed 29 December, 2014

  • Mane AV, Deshpande TV, Wagh VB, Karadge BA, Samant JS (2011) A critical review on physiological changes associated with reference to salinity. Int J Environ Sci 1(6):1–25

    Google Scholar 

  • McNeely J (2001) Invasive species: a costly catastrophe for native biodiversity. Land Use Water Resour Res 1(2):1–10

    Google Scholar 

  • Meza L, Corso S, Soza S (2010) Gestión del riesgo de sequía y otros eventos climáticos extremos en Chile. Organización de la Naciones Unidas para la Agricultura y la Alimentación (FAO). Documento técnico, p 128

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  Google Scholar 

  • Miranda RQ, Oliveira MTP, Correia RM, Almeida-Cortez JS, Pompelli MF (2011) Germination of Prosopis juliflora (Sw) DC seeds after scarification treatments. Plant Species Biol 26:186–192

    Article  Google Scholar 

  • Miranda M, Vega-Gálvez A, Martínez E, López J, Marín R, Aranda M, Fuentes F (2013) Influence of contrasting environments on seed composition of two quinoa genotypes: nutritional and functional properties. Chil J Agric Res 73(2):108–116

    Article  Google Scholar 

  • Montandon G, Silva A, Carneiro E, Miana S, Boddey RM, Schmidt S (2011) Nitrogen-fixing legume trees species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149

    Article  Google Scholar 

  • Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central chile and associated circulation anomalies. J Clim 16:281–296

    Article  Google Scholar 

  • Mottura M, Finkeldey R, Verga A, Gailing O (2005) Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Mol Ecol Notes 5:487–489

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Ondrasek G, Rengel Z, Veres S (2011) Soils salinisation and sal stress in crop production, Chapter 8. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanism and adaptions. INTECH, Rijeka

    Google Scholar 

  • PAN (2014) Plan Nacional de Adaptación al Cambio Climático. Oficina de Cambio Climático. Ministerio de Medioambiente. Santiago, p 56

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Pasiecznik NM, Felker P, Harris PJC, Harsh LN, Cruz G, Tewari JC, Cadoret K, Maldonado KJ (2001) The Prosopis julifloraProsopis pallida complex: a monograph. HDRA, Coventry 170 p

    Google Scholar 

  • Peinetti R, Pereyra M, Kin A, Sosa A (1993) Effects of cattle ingestion on viability and germination rate of caldén (Prosopis caldenia) seeds. J Range Manag 46:483–486

    Article  Google Scholar 

  • Peñuelas J, Filella I (2001) Phenology: responses to a warming world. Science 294:793–795

    Article  Google Scholar 

  • Plaza D (2010) Análisis de la diversidad genética del Algarrobo (Prosopis chilensis (Molina) Stuntz) en la Región de Coquimbo y su correlación con la composición proximal de sus frutos maduros. Dissertation, Universidad de La Serena, Chile, p 83

  • Pompelli M, Ferreira D, Cavalcante P, Salvador T, Hsie B, Endres L (2010) Environmental influence on the physico-chemical and physiological properties of Jatropha curcas seeds. Aust J Bot 58:421–427

    Article  CAS  Google Scholar 

  • Prado F, Boero C, Gallardo M, González J (2000) Effect of germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Bot Bull Acad Sin 41:27–34

    CAS  Google Scholar 

  • Rhoades JD, Chanduvi F, Lesch S (1999) Soils salinity assessment. Methods and interpretation of electrical conductivity measurements. FAO, Irrigation and Drainage Document. p 165

  • Rhodes D, Felker P (1988) Mass screening of Prosopis (mesquite) seedlings for growth at seawater salinity. For Ecol Manag 24:169–176

    Article  Google Scholar 

  • Ríos-Gómez R, Salas-García CE, Monroy-Ata A, Solano E (2010) Salinity effect on Prosopis laevigata seedlings. Terra latinoamericana 28(2):99–107

    Google Scholar 

  • Roshetko J, Gutteridge R (1996) Nitrogen fixing trees for fodder production—a field manual. Winrock, Morrilton

    Google Scholar 

  • Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the Southern oscillation. Int J Climatol 11:63–76

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 3 March 2013

  • Santibáñez F (2014) Atlas de cambio climático de la zona semiárida de Chile. Fondo de Protección Ambiental del Ministerio de Medioambiente. p 145

  • Santibáñez F, Santibáñez P (2007) Trends in land degradation in Latin America and the Caribbean, the role of climate change. In: Climate and land degradation World Meteorological Organization. Springer Verlag, pp 65–81

  • Santibáñez F, Roa P, Santibáñez P (2008) El medio físico. Capítulo I. In: Rovira J, Ugalde J, Stutzin M (eds) Biodiversidad en Chile. CONAMA, Santiago de Chile, p 639

  • Serra MT (1997) Prosopis chilensis. In: Especies arbóreas y arbustivas para las zonas áridas y semiáridas de América Latina. Serie: Zonas Áridas y Semiáridas, Organización de las Naciones Unidas para la Agricultura y la Alimentación, Programa de las Naciones Unidas para el Medio Ambiente 12:215–225

  • Sosa L, Llanes A, Reinoso H, Reginato M, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann Bot 96:261–267

    Article  CAS  Google Scholar 

  • Squeo F, Holmgren M, Jiménez M, Albán L, Reyes J, Gutiérrez J (2007) Tree establishment along an ENSO experimental gradient in the Atacama desert. J Veg Sci 18:193–200

    Article  Google Scholar 

  • UDP (2012) Unidad de Diagnóstico Parlamentario. La Desertificación en Chile. Departamento de Evaluación de la Ley. Valparaíso, p 20

  • UNEP (1992) Managing fragile ecosystem: combating desertification and drought. Agenda 21, chapter 12. United Nations Environment Programme. http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=52&ArticleID=60 Accessed 05 March 2013

  • Valdivia C, Romero C (2013) En la senda de la extinción: el caso del algarrobo Prosopis chilensis (Fabaceae) y el bosque espinoso en la Región Metropolitana de Chile central. Gayana Botanica 70(1):57–65

    Article  Google Scholar 

  • Vallejo A, Yanovsky M, Botto J (2010) Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses. Ann Bot 106:833–842

    Article  CAS  Google Scholar 

  • Verga A, Gregorius H (2007) Comparing morphological with genetic distances between populations: a new method and its application to the Prosopis chilensisP. flexuosa complex. Silvae Genet 56(2):45–51

    Google Scholar 

  • Vidiella P, Armesto J (1989) Emergence of ephemeral plant species from the north-central Chilean desert in response to experimental irrigation. Revista Chilena Hist Nat 62:99–107

    Google Scholar 

  • Villagra P (1995) Temperature effects on germination of Prosopis argentina and P. alpataco (Fabaceae, Mimosoideae). Seed Sci Technol 23:639–646

    Google Scholar 

  • Villagra P, Cavagnaro J (2005) Effects of salinity-soil type interactions on the establishment, growth and water relations of Prosopis argentina and P. alpataco seedlings. Implications for their ecological success. Austral Ecol 30:325–335

    Article  Google Scholar 

  • Villagra P, Cavagnaro J (2006) Water stress effects on the seedling growth of Prosopis argentina and Prosopis alpataco. J Arid Environ 64:390–400

    Article  Google Scholar 

  • Wang C, Deser C, Yu J-Y, DiNezio P, Clement A (2012) El Niño Southern Oscillation (ENSO): a review. In: Coral reefs of the eastern Pacific. Springer, p 46

  • Yildiz M, Terzi H, Arikan ES (2006) Seed germination of populations of wild wheat species, Aegilops biuncialis and Ae. triuncialis: effects of salinity, temperature and photoperiod. Pak J Biol Sci 9:1299–1305

    Article  Google Scholar 

  • Yu HQ, Wang YG, Yong TM, She YH, Fu FL, Li WC (2014) Heterologous expression of betaine aldehyde dehydrogenase gene from Ammopiptanthus nanus confers high salt and heat tolerance to Escherichia coli. Gene 549:77–84

    Article  CAS  Google Scholar 

  • Zolla G, Heimer YM, Barak S (2010) Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J Exp Bot 61(1):211–224

    Article  CAS  Google Scholar 

  • Zurita-Silva A, Fuentes F, Zamora P, Jacobsen S-E, Schwember A (2014) Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol Breed 34(1):13–30

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the valuable comments of Dr Julio Gutiérrez and three anonymous reviewers. C. Ibáñez acknowledges Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant No. 1110831 (CONICYT—Chile) and Ministerio de Educación (MINEDUC)—Convenio de Desempeño para la Educación Superior, Grant No. ULS-1401 for financial support. C. Westphal is supported by “Programa de Formación de Capital Humano Avanzado de CONICYT, Becas para Estudios de Doctorado Nacional 2011, Grant No. 21120460”.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Ibáñez.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphal, C., Gachón, P., Bravo, J. et al. The Potential of Algarrobo (Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions. Environmental Management 56, 209–220 (2015). https://doi.org/10.1007/s00267-015-0490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-015-0490-4

Keywords

Navigation