Environmental Management

, Volume 55, Issue 5, pp 1200–1216 | Cite as

Assessing Landscape Scale Wildfire Exposure for Highly Valued Resources in a Mediterranean Area

  • Fermín J. AlcasenaEmail author
  • Michele Salis
  • Alan A. Ager
  • Bachisio Arca
  • Domingo Molina
  • Donatella Spano


We used a fire simulation modeling approach to assess landscape scale wildfire exposure for highly valued resources and assets (HVR) on a fire-prone area of 680 km2 located in central Sardinia, Italy. The study area was affected by several wildfires in the last half century: some large and intense fire events threatened wildland urban interfaces as well as other socioeconomic and cultural values. Historical wildfire and weather data were used to inform wildfire simulations, which were based on the minimum travel time algorithm as implemented in FlamMap. We simulated 90,000 fires that replicated recent large fire events in the area spreading under severe weather conditions to generate detailed maps of wildfire likelihood and intensity. Then, we linked fire modeling outputs to a geospatial risk assessment framework focusing on buffer areas around HVR. The results highlighted a large variation in burn probability and fire intensity in the vicinity of HVRs, and allowed us to identify the areas most exposed to wildfires and thus to a higher potential damage. Fire intensity in the HVR buffers was mainly related to fuel types, while wind direction, topographic features, and historically based ignition pattern were the key factors affecting fire likelihood. The methodology presented in this work can have numerous applications, in the study area and elsewhere, particularly to address and inform fire risk management, landscape planning and people safety on the vicinity of HVRs.


Fire exposure Fire risk Highly valued resources and assets Mediterranean areas MTT algorithm 



The authors would like to thank the Forest Service of Sardinia and the Sardinia Civil Protection for collaborating in this study. This work was partially funded by the GEMINA Project - MIUR/MATTM n. 232/2011, by the EXTREME Project (Legge Regione Sardegna 7/2007, CRP-25405), and by the Project “Modeling approach to evaluate fire risk and mitigation planning actions” (P.O.R. SARDEGNA F.S.E. 2007–2013, Asse IV Capitale umano, Linea di Attivita` l.3.1).


  1. Ager AA, Finney MA, Kerns BK, Maffei H (2007) Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in Central Oregon, USA. For Ecol Manag 246:45–56. doi: 10.1016/j.foreco.2007.03.070 CrossRefGoogle Scholar
  2. Ager AA, Vaillant NM, Finney MA (2010a) A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For Ecol Manag 259(8):1556–1570. doi: 10.1016/j.foreco.2010.01.032 CrossRefGoogle Scholar
  3. Ager AA, Finney MA, McMahan A (2010b) Measuring the effect of fuel treatments on forest carbon using landscape risk analysis. Nat Hazards Earth Syst Sci 10:2515–2526. doi: 10.5194/nhess-10-2515-2010 CrossRefGoogle Scholar
  4. Ager AA, Vaillant N, Finney MA (2011) Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J Combust. doi: 10.1155/2011/572452
  5. Ager AA, Vaillant NM, Finney MA, Preisler HK (2012) Analyzing wildfire exposure and source-sink relationships on a fire prone forest landscape. For Ecol Manag 267:271–283. doi: 10.1016/j.foreco.2011.11.021 CrossRefGoogle Scholar
  6. Ager AA, Preisler HK, Arca B, Spano D, Salis M (2014) Wildfire risk estimation in the Mediterranean area. Environmetrics 25:384–396. doi: 10.1002/env.2269 CrossRefGoogle Scholar
  7. Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. General Technical Report INT-GTR-122. USDA Forest Service, Intermountain Forest and Range Experiment Station, OgdenGoogle Scholar
  8. Andrews PL, Heinsch FA, Schelvan L (2011) How to generate and interpret fire characteristics charts for surface and crown fire behavior. General Technical Report RMRS- GTR-253. USDA Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  9. Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D (2007) Evaluation of FARSITE simulator in Mediterranean maquis. Int J Wildl Fire 16:563–572. doi: 10.1071/wf06070 CrossRefGoogle Scholar
  10. Arca B, Bacciu V, Pellizzaro G, Salis M, Ventura A, Duce P, Spano D, Brundu G (2009) Fuel model mapping by IKONOS imagery to support spatially explicit fire simulators. In: Chuvieco E, Lasaponara R (eds) 7th international workshop on advances in remote sensing in forest fire management. Il Segno Arti Grafiche, Potenza, pp 75–78Google Scholar
  11. Arca B, Salis M, Pellizzaro G, Bacciu V, Spano D, Duce P, Ager AA, Finney MA (2010) Climate change impact on fire probability and severity in Mediterranean areas. In: Viegas DX (ed) 7th international conference on forest fire research. University of Coimbra, Coimbra, pp 5–18Google Scholar
  12. Arca B, Pellizzaro G, Duce P, Salis M, Bacciu V, Spano D, Ager AA, Finney MA, Scoccimarro E (2012) Potential changes in fire probability and severity under climate change scenarios in Mediterranean areas. In: Spano D, Bacciu V, Salis M, Sirca C (eds) Modelling fire behavior and risk. Nuova Stampa Color Publishers, Muros, pp 92–98Google Scholar
  13. Arienti MC, Cumming SG, Boutin S (2006) Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management. Can J For Res 36:3155–3166. doi: 10.1139/x06-188 CrossRefGoogle Scholar
  14. Atkinson D, Chladil M, Janssen V, Lucieer A (2010) Implementation of quantitative bushfire risk analysis in a GIS environment. Int J Wildl Fire. 19:649–658. doi: 10.1071/wf08185 CrossRefGoogle Scholar
  15. Attiwill PM, Adams MA (2013) Mega-fires, inquiries and politics in the eucalypt forests of Victoria, south-eastern Australia. For Ecol Manag 294:45–53. doi: 10.1016/j.foreco.2012.09.015 CrossRefGoogle Scholar
  16. Attiwill PM, Binkley D (2013) Exploring the mega-fire reality: a ‘Forest Ecology and Management’ conference. For Ecol Manag 294:1–3. doi: 10.1016/j.foreco.2012.12.025 CrossRefGoogle Scholar
  17. Bar-Massada A, Radeloff VC, Stewart SI, Hawbaker TJ (2009) Wildfire risk in the wildland–urban interface: a simulation study in northwestern Wisconsin. For Ecol Manag 258:1990–1999. doi: 10.1016/j.foreco.2009.07.051 CrossRefGoogle Scholar
  18. Bar-Massada A, Syphard AD, Hawbaker TJ, Stewart SI, Radeloff VC (2011) Effects of ignition location models on the burn patterns of simulated wildfires. Environ Model Softw 26(5):583–592. doi: 10.1016/j.envsoft.2010.11.016 CrossRefGoogle Scholar
  19. Bar-Massada A, Stewart SI, Hammer RB, Mockrin MH, Radeloff VC (2013) Using structure locations as a basis for mapping the wildland urban interface. J Environ Manag 128:540–547. doi: 10.1016/j.jvman.2013.06.021 CrossRefGoogle Scholar
  20. Byram GM (1959) Combustion of forest fuels. In: Davis KP (ed) Forest fire: control and use. McGraw-Hill, New York, pp 61–89Google Scholar
  21. Calkin DE, Ager AA, Gilbertson-Day J, Scott JH, Finney MA, Schrader-Patton C, Quigley TM, Strittholt JR, Kaiden JD (2010) Wildfire risk and hazard: procedures for the first approximation. General Technical Report RMRS-GTR-235. USDA Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  22. Calkin DE, Ager AA, Thompson MP (2011) A comparative risk assessment framework for wildland fire management: the 2010 cohesive strategy science report. General Technical Report RMRS-GTR-262. USDA Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  23. Cardil A, Molina DM (2013) Factors causing victims of wildland fires in Spain (1980–2010). Hum Ecol Risk Assess Int J. doi: 10.1080/10807039.2013.871995 Google Scholar
  24. Cardil A, Molina DM, Ramirez J, Vega-García C (2013a) Trends in adverse weather patterns and large wildland fires in Aragón (NE Spain) from 1978 to 2010. Nat Hazards Earth Syst Sci 13:1393–1399. doi: 10.5194/nhess-13-1393-2013 CrossRefGoogle Scholar
  25. Cardil A, Salis M, Spano D, Delogu G, Molina DM (2013b) Large wildland fires and extreme temperatures in Sardinia (Italy). Iforest 7:162–169. doi: 10.3832/ifor1090-007 CrossRefGoogle Scholar
  26. Carty FX, Rego FC, Bação FL, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. Int J Wildl Fire 18:921–931. doi: 10.1071/wf07123 CrossRefGoogle Scholar
  27. Chas-Amil ML, Touza J, García-Martínez E (2013) Forest fires in the wildland–urban interface: a spatial analysis of forest fragmentation and human impacts. Appl Geog. 43:127–137. doi: 10.1016/j.apgeog.2013.06.010 CrossRefGoogle Scholar
  28. Chessa PA, Delitala A (1977) Il clima della Sardegna. In: Milella A (ed) Collana Note Tecniche di Agrometeorologia per la Sardegna. Chiarella Publishers, Sassari, pp. 17–38Google Scholar
  29. Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J, Hantson S, de la Riva J, Ibarra P, Rodrigues M, Echeverría M, Azqueta D, Román MV, Bastarrika A, Martínez S, Recondo C, Zapico E, Martínez-Vega FJ (2012) Integrating geospatial information into fire risk assessment. Int J Wildl Fire. doi: 10.1071/wf12052 Google Scholar
  30. Cohen JD (2001) Wildland-urban fire-a different approach. Proceedings of the fire-fighter safety summit. International Association of Wildland Fire, FairfaxGoogle Scholar
  31. Cohen JD (2012) Residential fire destruction during wildfires: a home ignition problem. In: Spano D, Bacciu V, Salis M, Sirca C (eds) Modelling fire behaviour and risk. Nuova Stampa Color Publishers, Muros, pp 212–217Google Scholar
  32. Cohen JD, Butler BW (1998) Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management. In: Proceedings of 30th fire and forest meteorology conference. International Association of Wildland Fire, LorneGoogle Scholar
  33. Conalgton RG, Green K (1999) Assessing the accuracy of remotely sensing data: principles and practices. Lewis Publishers, Boca RatonGoogle Scholar
  34. De Groot WJ, Cantin AS, Flannigan MD, Soja AJ, Gowman LM, Newbery A (2013) A comparison of Canadian and Russian boreal forest fire regimes. For Ecol Manag 294:23–34. doi: 10.1016/j.foreco.2012.07.033 CrossRefGoogle Scholar
  35. Dimitrakopoulos A, Gogi C, Stamatelos G, Mitsopoulos I (2011) Statistical analysis of the fire environment of large forest fires (>1000 ha) in Greece. Pol J Environ Stud 20(2):327–332Google Scholar
  36. Duguy B, Alloza JA, Röder A, Vallejo R, Pastor F (2007) Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain). Int J Wildl Fire 16:619–632. doi: 10.1071/wf06101 CrossRefGoogle Scholar
  37. EPA (United States Environmental Protection Agency) (1998) Guidelines for ecological risk assessment. EPA/630/R-95/002F, Federal Register 63(93): 26846–26924Google Scholar
  38. Fairbrother and Turnley (2005) Predicting risks of uncharacteristic wildfires: application of the risk assessment process. For Ecol Manage 211:28–35. doi: 10.1016/j.foreco.2005.01.026 CrossRefGoogle Scholar
  39. FAO (2007) Fire management—Global assessment 2006. Forestry Paper Number 151. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  40. Finney MA (2002) Fire growth using minimum travel time methods. Can J For Res 32(8):1420–1424. doi: 10.1139/x02-068 CrossRefGoogle Scholar
  41. Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. Fire Ecol Manag 211:97–108. doi: 10.1016/j.foreco.2005.02.010 CrossRefGoogle Scholar
  42. Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Andrews PL, Butler BW (eds) Fuels management—how to measure success. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 213–220Google Scholar
  43. Finney MA (2007) A computational method for optimising fuel treatment locations. Int J Wildl Fire 16:702–711. doi: 10.1071/wf06063 CrossRefGoogle Scholar
  44. Finney MA, Seli RC, McHugh CW, Ager AA, Bahro B, Agee JK (2007) Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int J Wildl Fire 16:712–727. doi: 10.1071/wf06064 CrossRefGoogle Scholar
  45. Finney MA, McHugh CW, Grenfell IC, Riley KL, Short KC (2011) A simulation of probabilistic wildfire risk components for the continental United States. Stoch Environ Res Risk Assess 25:973–1000. doi: 10.10007/s00477-011-0462-z CrossRefGoogle Scholar
  46. Forthofer J, Butler B (2007) Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field. In: Butler BW, Cook W (eds) The fire environment-innovations, management, and policy; conference proceedings. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 26–30Google Scholar
  47. Forthofer JM, Butler BW, Wagenbrenner NS (2014a) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int J Wildl Fire 23:969–981. doi: 10.1071/wf12089 CrossRefGoogle Scholar
  48. Forthofer JM, Butler BW, McHugh CW, Finney MA, Bradshaw LS, Stratton RD, Shannon KS, Wagenbrenner NS (2014b) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. Int J Wildl Fire 23:982–994. doi: 10.1071/wf12090 CrossRefGoogle Scholar
  49. González-Olabarria JR, Brotons L, Gritten D, Tudela A, Teres JA (2012) Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildl Fire 21(7):905–914. doi: 10.1071/wf11039 CrossRefGoogle Scholar
  50. Haas JR, Calkin DE, Thompson MP (2013) A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States. Landsc Urban Plan 119:44–53. doi: 10.1016/j.landurbplan.2013.06.011 CrossRefGoogle Scholar
  51. Haight RG, Cleland DT, Hammer RB, Radeloff VC, Rupp TS (2004) Assessing fire risk in the wildland-urban interface. J For 102(7):41–48Google Scholar
  52. Herrero-Corral G, Jappiot M, Bouillon C, Long-Fournel M (2012) Application of a geographical assessment method for the characterization of wildland-urban interfaces in the context of wildfire prevention: a case study in western Madrid. Appl Geog 35:60–70. doi: 10.1016/j.apgeog.2012.05.005 CrossRefGoogle Scholar
  53. Holden ZA, Morgan P, Crimmins M, Steinhorst K, Smith AMS (2007) Fire season precipitation variability influences fire severity and extent in a large southwestern wilderness area, USA. Geophys Res Lett 34:1–5. doi: 10.1029/2007gl030804 CrossRefGoogle Scholar
  54. INFC (2005) Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio. Ministero delle Politiche Agricole Alimentari e Forestali, Ispettorato Generale - Corpo Forestale dello Stato. CRA - Istituto Sperimentale per l’Assestamento Forestale e per l’Alpicoltura. Accessed June 2014
  55. Kalabokidis K, Palaiologou P, Finney M (2013) Fire behavior simulation in mediterranean forests using the minimum travel time algorithm. In: International Association of Wildland Fire (eds) Proceedings of 4th fire behavior and fuels conference. International Association of Wildland Fire, St. Petersburg, pp. 468–492Google Scholar
  56. Karali A, Hatzaki M, Giannakopoulos C, Roussos A, Xanthopoulos G, Tenentes V (2014) Sensitivity and evaluation of current fire risk and future projections due to climate change: the case study of Greece. Nat Hazards Earth Syst Sci 14:143–153. doi: 10.5194/nhess-14-143-2014 CrossRefGoogle Scholar
  57. Lampin-Maillet C, Jappiot M, Long M, Bouillon C, Morge D, Ferrier JP (2009) Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J Environ Manag 91:732–741. doi: 10.1016/j.envman.2009.10.001 CrossRefGoogle Scholar
  58. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  59. Madrigal J, Ruiz J, Planelles R, Hernando C (2013) Characterization of wildland-urban interfaces for fire prevention in the province of Valencia (Spain). For Syst 22(2):249–254. doi: 10.5424/fs/2013222-03985 Google Scholar
  60. Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252. doi: 10.1016/j.envman.2008.07.005 CrossRefGoogle Scholar
  61. Mell WE, Manzello SL, Maranghides A, Butry D, Rhem DB (2010) The wildland-urban interface fire problem: current approaches and research needs. Int J Wildl Fire. 19:238–251. doi: 10.1071/wf07131 CrossRefGoogle Scholar
  62. Miller C, Ager AA (2013) A review of recent advances in risk analysis for wildfire management. Int J Wildl Fire. 22:1–14. doi: 10.1071/wf11114 CrossRefGoogle Scholar
  63. MMA (2007) Los incendios forestales en España. Decenio 1996–2005. Area de Defensa Contra Incendios Forestales. Ministerio de Medio Ambiente, MadridGoogle Scholar
  64. Molina D, Castellnou M, García-Marco D, Salgueiro A (2010) Improving fire management success through fire behaviour specialists. In: Sande J, Rego F, Fernandes P, Rigolot E (eds) Towards integrated fire management-outcomes of the European project fire paradox. European Forest Institute, Joensuu, pp 105–119Google Scholar
  65. Molina-Martínez JR, Herrera-Machuca M, Zamora-Díaz R, Rodríguez y Silva F, González-Cabán A (2011) Economic losses to Iberian swine production from forest fires. For Policy Econ 13(8):614–621. doi: 10.1016/j.forpol.2011.07.011 CrossRefGoogle Scholar
  66. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92(10):2389–2402. doi: 10.1016/j.jenvman.2011.06.028 CrossRefGoogle Scholar
  67. Moreno JM, Vázquez A, Vélez R (1998) Recent history of forest fires in Spain. In: Moreno JM (ed) Large fires. Backhuys Publishers, Leiden, pp 159–185Google Scholar
  68. Mouillot F, Ratte JP, Joffre R, Moreno JM, Rambal S (2003) Some determinants of the spatio-temporal fire cycle in a Mediterranean landscape (Corsica, France). Landsc Ecol 18(7):665–674CrossRefGoogle Scholar
  69. Parisien MA, Snetsinger S, Greenberg JA, Nelson CR, Schoennagel T, Dobrowski SZ, Moritz MA (2012) Spatial variability in wildfire probability across the western United States. Int J Wildl Fire 21:313–327. doi: 10.1071/wf11044 CrossRefGoogle Scholar
  70. Pellizzaro G, Duce P, Ventura A, Zara P (2007) Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. Int J Wildl Fire 16:633–641. doi: 10.1071/wf05088 CrossRefGoogle Scholar
  71. Pellizzaro G, Ventura A, Arca B, Arca A, Duce P (2009) Weather seasonality and temporal pattern of live and dead fuel moisture content in Mediterranean shrublands. European Geosciences Union (EGU) General Assembly 2009, ViennaGoogle Scholar
  72. Pellizzaro G, Arca B, Pintus GV, Ferrara R, Duce P (2012) Wildland-urban interface dynamics during the last 50 years in North East Sardinia. In: Spano D, Bacciu V, Salis M, Sirca C (eds) Modelling Fire Behavior and Risk. Nuova Stampa Color Publishers, Muros, pp 249–254Google Scholar
  73. Preisler HK, Brillinger DR, Burgan RE, Benoit JW (2004) Probability based models for estimating wildfire risk. Int J Wildl Fire 13:133–142. doi: 10.1071/wf02061 CrossRefGoogle Scholar
  74. Prestemon JP, Butry DT, Abt KL, Sutphen R (2010) Net benefits of wildfire prevention education efforts. For Sci 56:181–192Google Scholar
  75. Rodríguez y Silva F, González-Cabán A (2010) ‘SINAMI’: a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems. Int J Wildl Fire 19:927–936. doi: 10.1071/wf09015 CrossRefGoogle Scholar
  76. Román MV, Azqueta D, Rodrígues M (2013) Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. For Ecol Manag 294:158–165. doi: 10.1016/j.foreco.2012.07.001 CrossRefGoogle Scholar
  77. Romero-Calcerrada R, Novillo C, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc Ecol 23(3):341–354. doi: 10.1007/s10980-008-9190-2 CrossRefGoogle Scholar
  78. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Research Paper, INT-115. USDA Forest Service, Intermountain Forest and Range Experiment Station, OgdenGoogle Scholar
  79. Safford HD, Schmidt DA, Carlson CH (2009) Effects of fuel treatments on fire severity in an area of wildland–urban interface, Angora Fire, Lake Tahoe Basin, California. For Ecol Manag 258:773–787. doi: 10.1016/j.foreco.2009.05.024 CrossRefGoogle Scholar
  80. Salis M (2008) Fire behaviour simulation in Mediterranean Maquis using FARSITE (fire area simulator). PhD Thesis. Università degli Studi di Sassari, Dipartimento di Economia e Sistemi Arborei, 130 ppGoogle Scholar
  81. Salis M, Diana G, Casula F, Farris G, Farris O, Licheri F, Musina G, Orotelli S, Peluffo L, Pirisi AM, Bacciu V, Fois C, Sirca C, Spano D (2012a) Potential effects of prescribed burning and tactical fires on fire risk mitigation. In: Spano D, Bacciu V, Salis M, Sirca C (eds) Modelling fire behavior and risk. Nuova Stampa Color Publishers, Muros, pp 174–180Google Scholar
  82. Salis M, Arca B, Ager AA, Fois C, Bacciu V, Duce P, Spano D (2012b) Extreme wildfire spread and behaviour: case studies from North Sardinia, Italy. In: Abbasi A, Giesen N (eds) European geosciences union EGU general assembly 2012. European Geosciences Union, ViennaGoogle Scholar
  83. Salis M, Ager AA, Arca B, Finney MA, Bacciu V, Duce P, Spano D (2013a) Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. Int J Wildl Fire 22(4):549–565. doi: 10.1071/wf11060 CrossRefGoogle Scholar
  84. Salis M, Alcasena F, Ager AA, Casula F, Arca B, Bacciu V, Spano D (2013b) Analyzing changes in wildfire likelihood and intensity in Mediterranean areas: a case study from central Sardinia, Italy. Proceedings of the “I Conferenza Annuale SISC”. Italian Society for the Climate Sciences, Lecce, pp. 685–706Google Scholar
  85. Salis M, Ager AA, Finney MA, Arca B, Spano D (2014) Analyzing spatiotemporal changes in wildfire regimes and exposure across a Mediterranean fire-prone area. Nat Hazard. 71(3):1389–1418. doi: 10.1007/s11069-013-0951-0 CrossRefGoogle Scholar
  86. Salis M, Ager AA, Alcasena F, Arca B, Finney MA, Pellizaro G, Spano D (2015) Analyzing seasonal patterns of wildfire likelihood and intensity in Sardinia, Italy. Environ Monit Assess. 187:4175. doi: 10.1007/s10661-014-4175-x CrossRefGoogle Scholar
  87. Schroeder M, Buck C (1970) Fire weather: a guide for application of meteorological information to forest fire control operations. USDA Forest ServiceGoogle Scholar
  88. Scott JH, Burgan R (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s Surface Fire Spread Model. General Technical Report RMRS-GTR-153. USDA Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  89. Scott JH, Thompson MP, Calkin DE (2013) A wildfire risk assessment framework for land and resource management. General Technical Reports RMRS-GTR-315. USDA Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  90. Sharples JJ, McRae RHD, Wilkes SR (2012) Wind–terrain effects on the propagation of wildfires in rugged terrain: fire channeling. Int J Wildl Fire. 21:282–296. doi: 10.1071/wf10055 CrossRefGoogle Scholar
  91. Stewart S, Radeloff V, Hammer R (2003) Characteristics and location of the wildland-urban interface. Proceedings of wildland fire ecology and fire management workshop, OrlandoGoogle Scholar
  92. Stockmann K, Burchfield J, Calkin D, Venn T (2010) Guiding preventative wildland fire mitigation policy and decisions with an economic modeling system. For Policy Econ. 12:147–154. doi: 10.1016/j.forpol.2009.09.009 CrossRefGoogle Scholar
  93. Stratton RD (2006) Guidance on spatial wildland fire analysis: models, tools, and techniques. General Technical Report RMRS-GTR-183. USDA Forest Service, Rocky Mountain Research Station, Fort CollinsGoogle Scholar
  94. Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildl Fire 17:602–613. doi: 10.1071/wf07087 CrossRefGoogle Scholar
  95. Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: a review. J Environ Manag 92(8):1895–1909. doi: 10.1016/j.jenvman.2011.03.015 CrossRefGoogle Scholar
  96. Van Linn PF, Nussear KE, Esque TC, De Falco LA, Inman RD, Abella SR (2013) Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling. Int J Wildl Fire 22:770–779. doi: 10.1071/wf12158 CrossRefGoogle Scholar
  97. Verde JC, Zêzere JL (2010) Assessment and validation of wildfire susceptibility and hazard in Portugal. Nat Hazards Earth Syst Sci 10:485–497. doi: 10.5194/nhess-10-485-2010 CrossRefGoogle Scholar
  98. Viegas DX, Simeoni A (2011) Eruptive behavior of forest fires. Fire Technol 47:303–320. doi: 10.1007/s10694-010-0193-6 CrossRefGoogle Scholar
  99. Viegas DX, Viegas MT (2005) Human behaviour associated to fatal accidents of 2003 in Portugal. In: Butler BW, Alexander ME (eds) Eighth international wildland firefighter safety summit: human factors—10 years later. The International Association of Wildland Fire, MissoulaGoogle Scholar
  100. Viegas DX, Simeoni A, Xanthopoulos G, Rossa C, Ribeiro LM, Pita LP, Stipanicev D, Zinoviev A, Weber R, Dold J, Caballero D, San Miguel J (2009) Recent forest fire related accidents in Europe. European Commission Joint Research Centre Institute for Environment and Sustainability, LuxembourgGoogle Scholar
  101. Viegas DX, Raposo JR, Davim DA, Rossa CG (2012) Study of the jump fire produced by the interaction of two oblique fire fronts. Part 1. Analytical model and validation with no-slope laboratory experiments. Int J Wildl Fire. 21:843–856. doi: 10.1071/wf10155 CrossRefGoogle Scholar
  102. Williams J (2013) Exploring the onset of high-impact mega-fires through a forest land management prism. For Ecol Manag 294:4–10. doi: 10.1016/j.foreco.2012.06.030 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fermín J. Alcasena
    • 1
    • 2
    Email author
  • Michele Salis
    • 2
    • 3
  • Alan A. Ager
    • 4
  • Bachisio Arca
    • 5
  • Domingo Molina
    • 6
  • Donatella Spano
    • 2
    • 3
  1. 1.Department of Agricultural and Forest EngineeringUniversity of LleidaLleidaSpain
  2. 2.IAFENT DivisionEuro-Mediterranean Center on Climate Change (CMCC)SassariItaly
  3. 3.Department of Science for Nature and Environmental Resources (DIPNET)University of SassariSassariItaly
  4. 4.Pacific Northwest Research StationUSDA Forest ServicePendletonUSA
  5. 5.Institute of Biometeorology (IBIMET)National Research Council (CNR)SassariItaly
  6. 6.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations