Skip to main content

Advertisement

Log in

Relative Linkages of Canopy-Level CO2 Fluxes with the Climatic and Environmental Variables for US Deciduous Forests

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We used a simple, systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic, environmental, and ecological variables based on their similarity as drivers, examining their interrelation patterns at different sites. Explanatory partial least squares regression models were developed to estimate the relative linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process components adequately described the system-data variances. The ‘radiation-energy’ component had the strongest linkage with CO2 fluxes, whereas the ‘aerodynamic’ and ‘temperature-hydrology’ components were low to moderately linked with the carbon fluxes. On average, the ‘radiation-energy’ component showed 5 and 8 times stronger carbon flux linkages than that of the ‘temperature-hydrology’ and ‘aerodynamic’ components, respectively. The similarity of observed patterns among different study sites (representing gradients in climate, canopy heights and soil-formations) indicates that the findings are potentially transferable to other deciduous forests. The similarities also highlight the scope of developing parsimonious data-driven models to predict the potential sequestration of ecosystem carbon under a changing climate and environment. The presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic insights; complementing process-based model building with a warranted complexity. Model efficiency and accuracy (R 2 = 0.55–0.81; ratio of root-mean-square error to the observed standard deviations, RSR = 0.44–0.67) reiterate the usefulness of multivariate analytics models for gap-filling of instantaneous flux data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A et al (1999) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  Google Scholar 

  • Baker I, Denning AS, Hanan N et al (2003) Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5. Glob Chang Biol 9(9):1262–1277

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9(4):479–492

    Article  Google Scholar 

  • Baldocchi DD, Meyers T (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agric For Meteorol 90(1–2):1–25

    Article  Google Scholar 

  • Baldocchi DD, Falge E, Gu L et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric For Meteorol 126(3):237–255

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    Article  CAS  Google Scholar 

  • Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob Chang Biol 11(2):335–355

    Article  Google Scholar 

  • Byrne KA, Kiely G, Leahy P (2005) CO2 fluxes in adjacent new and permanent temperate grasslands. Agric For Meteorol 135(1):82–92

    Article  Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393(6682):249–252

    Article  CAS  Google Scholar 

  • Carrara A, Kowalski AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R (2003) Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric For Meteorol 119(3):209–227

    Article  Google Scholar 

  • Carvalhais N, Seixas J, Myneni R (2005) Modeling net ecosystem productivity scale issues and regional application to the Iberian Peninsula. In: Seventh international carbon dioxide conference (ICDC7) September 25–30

  • Chen M, Zhuang Q, Cook DR et al (2011) Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosci Discuss 8(2):2721–2773

    Article  Google Scholar 

  • Chong IG, Jun CH (2005) Performance of some variable selection methods when multicollinearity is present. Chemometr Intell Lab Syst 78(1):103–112

    Article  CAS  Google Scholar 

  • de Jong S (1993) SIMPLS: an alternative approach to partial least squares regression. Chemometr Intell Lab Syst 18(3):251–263

    Article  Google Scholar 

  • Desai AR (2010) Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. J Geophys Res. doi:10.1029/2010JG001423

  • Dragon K (2006) Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). J Hydrol 331(1):272–279

    Article  Google Scholar 

  • Drake BG, Azcon-Bieto J, Berry J et al (1999) Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22(6):649–657

    Article  CAS  Google Scholar 

  • Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107(1):71–77

    Article  Google Scholar 

  • Fuentes JD, Wang D (1999) On the seasonality of isoprene emissions from a mixed temperate forest. Ecol Appl 9(4):1118–1131

    Article  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7(8):849–882

    Article  Google Scholar 

  • Gilmanov TG, Parton WJ, Ojima DS (1997) Testing the ‘CENTURY’ ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecol Modell 96(1):191–210

    Article  Google Scholar 

  • Gove JH, Holinger DY (2006) Application of a dual unscented Kalman filter for simultaneous state and parameter estimation in problems of surface-atmospheric exchange. J Geophys Res Atmos 111:1–21

    Article  Google Scholar 

  • Grant RF, Baldocchi DD, Ma S (2012) Ecological controls on net ecosystem productivity of a seasonally dry annual grassland under current and future climates: modelling with ecosys. Agric For Meteorol 152:189–200

    Article  Google Scholar 

  • Hargrove WW, Hoffman FM (2005) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34(1):S39–S60

    Google Scholar 

  • Haworth M, Elliott-Kingston C, McElwain JC (2011) Stomatal control as a driver of plant evolution. J Exp Bot 62(8):2419–2423

    Article  CAS  Google Scholar 

  • Heber U, Neimanis S, Lange OL (1986) Stomatal aperture, photosynthesis and water fluxes in mesophyll cells as affected by the abscission of leaves. Simultaneous measurements of gas exchange, light scattering and chlorphyll fluorescence. Planta 167(4):554–562

    Article  CAS  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    Article  CAS  Google Scholar 

  • Hollinger DY, Aber J, Dail B et al (2004) Spatial and temporal variability in forest–atmosphere CO2 exchange. Glob Chang Biol 10(10):1689–1706

    Article  Google Scholar 

  • Hubert M, Branden KV (2003) Robust methods for partial least squares regression. J Chemom 17(10):537–549

    Article  CAS  Google Scholar 

  • Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric For Meteorol 121(1):93–111

    Article  Google Scholar 

  • Jahan N, Gan TY (2013) Developing a gross primary production model for coniferous forests of northeastern USA from MODIS data. Int J Appl Earth Obs Geoinf 25:11–20

    Article  Google Scholar 

  • Jarvis PG, Massheder JM, Hale SE, Moncrieff JB, Rayment M, Scott SL (1997) Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J Geophys Res Atmos (1984–2012) 102(D24):28953–28966

    Article  CAS  Google Scholar 

  • Jolliffe IT (1993) Principal component analysis: a beginner’s guide-II. Pitfalls, myths and extensions. Weather 48(8):246–253

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis HA et al (2011) Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res. doi:10.1029/2010JG001566

  • Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche-and process-based models: CO2 matters! Glob Chang Biol 17(1):565–579

    Article  Google Scholar 

  • Keenan TF, Davidson E, Moffat AM, Munger W, Richardson AD (2012) Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob Chang Biol 18(8):2555–2569

    Article  Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  • Larocque GR, Mailly D, Yue TX et al (2011) Common challenges for ecological modelling: synthesis of facilitated discussions held at the symposia organized for the 2009 conference of the International Society for Ecological Modelling in Quebec City, Canada, (October 6–9, 2009). Ecol Modell 222(14):2456–2468

    Article  Google Scholar 

  • Launiainen S, Rinne J, Pumpanen J et al (2005) Eddy covariance measurements of CO2 and sensible and latent fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ Res 10(6):569–588

    CAS  Google Scholar 

  • Li Z, Yu G, Xiao X et al (2007) Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sens Environ 107(3):510–519

    Article  Google Scholar 

  • Liu CW, Lin KH, Kuo YM (2003) Science Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313(1):77–89

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Loescher HW, Oberbauer SF, Gholz HL, Clark DB (2003) Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Glob Chang Biol 9(3):396–412

    Article  Google Scholar 

  • Lund M, Lafleur PM, Roulet NT et al (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Chang Biol 16(9):2436–2448

    Google Scholar 

  • Mahbub P, Ayoko GA, Goonetilleke A, Egodawatta P, Kokot S (2010) Impacts of traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads. Environ Sci Technol 44(23):8904–8910

    Article  CAS  Google Scholar 

  • Mäkelä A, Pulkkinen M, Kolari P et al (2008) Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Glob Chang Biol 14(1):92–108

    Google Scholar 

  • Masle J (2000) The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiol 122(4):1399–1416

    Article  CAS  Google Scholar 

  • Melesse AM, Hanley RS (2005) Artificial neural network application for multi-ecosystem carbon flux simulation. Ecol Modell 189(3):305–314

    Article  Google Scholar 

  • Moorcroft PR, Hurtt GC, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71(4):557–586

    Article  Google Scholar 

  • Morales P, Sykes MT, Prentice IC (2005) Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Chang Biol 11(12):2211–2233

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900

    Google Scholar 

  • Oechel WC, Vourlitis GL, Verfaillie J et al (2000) A scaling approach for quantifying the net CO2 flux of the Kuparuk River Basin, Alaska. Glob Chang Biol 6(S1):160–173

    Article  Google Scholar 

  • Panda UC, Sundaray SK, Rath P, Nayak BB, Bhatta D (2006) Application of factor and cluster analysis for characterization of river and estuarine water systems—a case study: Mahanadi River (India). J Hydrol 331(3):434–445

    Article  CAS  Google Scholar 

  • Peres-Neto PR, Jackson DA, Somers KM (2003) Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84(9):2347–2363

    Article  Google Scholar 

  • Piao S, Sitch S, Ciais P et al (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Chang Biol 19:2117–2132

    Article  Google Scholar 

  • Post WM, Pastor J (1996) Linkages—an individual-based forest ecosystem model. Clim Change 34(2):253–261

    Article  CAS  Google Scholar 

  • Richardson AD, Braswell BH, Hollinger DY et al (2006) Comparing simple respiration models for eddy flux and dynamic chamber data. Agric For Meteorol 141(2):219–234

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Modell 42(2):125–154

    Article  CAS  Google Scholar 

  • Running SW, Gower ST (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9(1–2):147–160

    Article  CAS  Google Scholar 

  • Schimel DS, House JI, Hibbard KA et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414(6860):169–172

    Article  CAS  Google Scholar 

  • Schlesinger WH (1999) Carbon sequestration in soils. Science 284(5423):2095

    Article  CAS  Google Scholar 

  • Schmidt A, Hanson C, Kathilankal J, Law BE (2011) Classification and assessment of turbulent fluxes above ecosystems in North-America with self-organizing feature map networks. Agric For Meteorol 151(4):508–520

    Article  Google Scholar 

  • Schmidt A, Hanson C, Chan WS, Law BE (2012) Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. J Geophys Res. doi:10.1029/2012JG002100

  • Schubert P, Lagergren F, Aurela M et al (2012) Modeling GPP in the Nordic forest landscape with MODIS time series data—comparison with the MODIS GPP product. Remote Sens Environ 126:136–147

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA et al (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275(5299):502–509

    Article  CAS  Google Scholar 

  • Shir CC, Bornstein RD (1977) Eddy exchange coefficients in numerical models of the planetary boundary layer. Bound Layer Meteorol 11(2):171–185

    Article  Google Scholar 

  • Sims DA, Rahman AF, Cordova VD et al (2008) A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112(4):1633–1646

    Article  Google Scholar 

  • Stauch VJ, Jarvis AJ (2006) A semi-parametric gap-filling model for eddy covariance CO2 flux time series data. Glob Chang Biol 12(9):1707–1716

    Article  Google Scholar 

  • Turner DP, Ritts WD, Styles JM, Yang Z, Cohen WB, Law BE, Thornton PE (2006) A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP. Tellus B 58(5):476–490

    Article  Google Scholar 

  • White A, Cannell MG, Friend AD (1999) Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Glob Environ Change 9:S21–S30

    Article  Google Scholar 

  • Williams M, Richardson AD, Reichstein M et al (2009) Improving land surface models with FLUXNET data. Biogeosci Discuss 6(2):2785–2835

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E et al (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1):223–243

    Article  Google Scholar 

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiah PR (ed) Multivaraite analysis. Academic Press, New York, pp 391–420

    Google Scholar 

  • Wold H (1982) Soft modelling: the basic design and some extensions. In: Jöreskog KG, Wold H (eds) Systems under indirect observation, part II. North Holland Press, Amsterdam

    Google Scholar 

  • Wold S, Johansson M, Cocchi M (1993) PLS-partial least squares projections to latent structures. In: Kubinyi H (ed) 3D QSAR in drug design, vol 1. Kluwer Academic Publishers, Netherlands, pp 523–550

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  • Wu C, Chen JM (2013) Deriving a new phenological indicator of interannual net carbon exchange in contrasting boreal deciduous and evergreen forests. Ecol Indic 24:113–119

    Article  CAS  Google Scholar 

  • Wylie BK, Fosnight EA, Gilmanov TG, Frank AB, Morgan JA, Haferkamp MR, Meyers TP (2007) Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains. Remote Sens Environ 106(4):399–413

    Article  Google Scholar 

  • Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123(1):79–96

    Article  Google Scholar 

  • Zhang Y, Grant RF, Flanagan LB, Wang S, Verseghy DL (2005) Modelling CO2 and energy exchanges in a northern semiarid grassland using the carbon-and nitrogen-coupled Canadian Land Surface Scheme (C-CLASS). Ecol Modell 181(4):591–596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by grants from the National Science Foundation's Environmental Sustainability Program (NSF CBET Award No. 1336911), and from the National Oceanic and Atmospheric Administration (NOAA NERRA Grant No. NA09NOS4190153). The supports are gratefully acknowledged. We also acknowledge the availability and usefulness of AmeriFLUX database, as funded by the US Department of Energy's Office of Science. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NSF or NOAA. Thanks to the reviewers and the Editor for providing insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar I. Abdul-Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishtiaq, K.S., Abdul-Aziz, O.I. Relative Linkages of Canopy-Level CO2 Fluxes with the Climatic and Environmental Variables for US Deciduous Forests. Environmental Management 55, 943–960 (2015). https://doi.org/10.1007/s00267-014-0437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-014-0437-1

Keywords

Navigation