Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species’ Abundance and Diversity

Abstract

Climate change will further exacerbate wetland deterioration, especially in the Mediterranean region. On the one side, it will accelerate the decline in the populations and species of plants and animals, this resulting in an impoverishment of biological abundance. On the other one, it will also promote biotic homogenization, resulting in a loss of species’ diversity. In this context, different climate change adaptation policies can be designed: those oriented to recovering species’ abundance and those aimed at restoring species’ diversity. Based on the awareness that knowledge about visitors’ preferences is crucial to better inform policy makers and secure wetlands’ public use and conservation, this paper assesses the recreational benefits of different adaptation options through a choice experiment study carried out in S’Albufera wetland (Mallorca). Results show that visitors display positive preferences for an increase in both species’ abundance and diversity, although they assign a higher value to the latter, thus suggesting a higher social acceptability of policies pursuing wetlands’ differentiation. This finding acquires special relevance not only for adaptation management in wetlands but also for tourism planning, as most visitors to S’Albufera are tourists. Thus, given the growing competition to attract visitors and the increasing demand for high environmental quality and unique experiences, promoting wetlands’ differentiation could be a good strategy to gain competitive advantage over other wetland areas and tourism destinations.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    Throughout the manuscript, a loss of species’ diversity refers to the qualitative rather than the quantitative implications of species’ loss.

  2. 2.

    Note that we refer to adaptation policies as planned measures engineered by human interventions on the environment. This should not be confounded with the concept of environmental adaptation, which refers to the autonomous responses to CC by organisms and ecosystems through natural physical and biological processes (Hobday et al. 2009).

  3. 3.

    Decree-Law No. 4/1998 of the Ministry of Agriculture and Fisheries of the Balearic Islands (January 28th).

  4. 4.

    [http://www.medwetlands-obs.org/node/33 accessed in December 2013].

  5. 5.

    An example of choice set is shown in the Appendix.

  6. 6.

    Under the CL, the independence from irrelevant alternatives (IIA) property holds, this involving that the relative probability of choosing one option over another is independent of the presence or absence of other alternatives.

  7. 7.

    The estimation results for the CL model are available from the authors upon request.

  8. 8.

    Note that quadratic effects have also been specified for the two environmental attributes.

  9. 9.

    Data provided by the Agència del Turisme de les Illes Balears for the II trimester of 2013[http://www.caib.es/sacmicrofront/archivopub.do?ctrl=MCRST865ZI154103&id=154103 accessed in December 2013].

  10. 10.

    Surveys were considered invalid when some missing responses were detected in the section concerning the choice of the alternatives due to the respondent’s lack of cooperation or when the surveyor considered the respondent was insincere. Protests included those questionnaires in which the choice of the BAU alternative was motivated by one of the following reasons: “I don’t perceive any environmental problem to justify extra management efforts,” “I am already paying for wetlands’ conservation,” “Others should pay,” and “I don’t trust the local authorities.”

  11. 11.

    A Wald test was performed under the null hypothesis of parameters’ equality between the coefficients of two separate dummies initially created for different waiting time reductions (from 15 to either 7 or 3 min). Results of the Wald test (0.10) suggested that we should not reject the null hypothesis at the 5 % significance level and hence create a unique variable (\( \begin{gathered} X_{{TIME\left( {less} \right)_{nj} }} \end{gathered} \)) for waiting time reduction, as seen in Eq. 4..

  12. 12.

    The LR statistic (2.51) suggested not to reject, at 1 % significance level, the null hypothesis that the joint effect of these interactions did not significantly contribute to improve model fit.

  13. 13.

    A specific question was included in the survey to identify respondents’ interests in visiting S’Albufera, thus allowing to distinguish between birdwatchers and non-birdwatchers.

References

  1. Amezaga JM, Santamaría L, Green AJ (2002) Biotic wetland connectivity–supporting a new approach for wetland policy. Acta Oecol 23(3):213–222. doi:10.1016/S1146-609X(02)01152-9

    Article  Google Scholar 

  2. Anthony A, Atwood J, August P, Byron C, Cobb S, Foster C, Fry C, Gold A, Hagos K, Heffner L, Kellogg DQ, Lellis-Dibble K, Opaluch JJ, Oviatt C, Pfeiffer-Herbert A, Rohr N, Smith L, Smythe T, Swift J, Vinhateiro N (2009) Coastal lagoons and climate change: ecological and social ramifications in U.S. Atlantic and Gulf coast ecosystems. Ecol Soc 14(1): 8. [online] URL: http://www.ecologyandsociety.org/vol14/iss1/art8/

  3. Araújo MB, Alagador D, Cabeza M, Nogues-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14(5):484–492. doi:10.1111/j.1461-0248.2011.01610.x

    Article  Google Scholar 

  4. Arnegger J, Woltering M, Job H (2010) Toward a product-based typology for nature-based tourism: a conceptual framework. J Sustain Tourism 18(7):915–928. doi:10.1080/09669582.2010.485680

    Article  Google Scholar 

  5. Ayache F, Thompson JR, Flower RJ, Boujarra A, Rouatbi F, Makina H (2009) Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia 622(1):15–43. doi:10.1007/s10750-008-9676-6

    Article  CAS  Google Scholar 

  6. Ballantyne R, Packer J, Falk J (2011) Visitors’ learning for environmental sustainability: testing short- and long-term impacts of wildlife tourism experiences using structural equation modeling. Tour Manag 32(6):1243–1252. doi:10.1016/j.tourman.2010.11.003

    Article  Google Scholar 

  7. Birol E, Hanley N, Koundouri P, Kountouris Y (2009) Optimal management of wetlands: quantifying trade-offs between flood risks, recreation, and biodiversity conservation. Water Resour Res 45:1–11. doi:10.1029/2008WR006955

    Google Scholar 

  8. Birol E, Koundouri P, Kountouris Y (2010) Assessing the economic viability of alternative water resources in water-scarce regions: combining economic valuation, cost-benefit analysis and discounting. Ecol Econ 69:839–847. doi:10.1016/j.ecolecon.2009.10.008

    Article  Google Scholar 

  9. Candela L, von Igel W, Elorza FJ, Aronica G (2009) Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). J Hydrol 376(3–4):510–527. doi:10.1016/j.jhydrol.2009.07.057

    Article  Google Scholar 

  10. Christie M, Hanley N, Warren J, Murphy K, Wright R, Hyde T (2006) Valuing the diversity of biodiversity. Ecol Econ 58:304–317. doi:10.1016/j.ecolecon.2005.07.034

    Article  Google Scholar 

  11. Christie M, Hanley N, Hynes S (2007) Valuing enhancements to forest recreation using choice experiment and contingent behavior methods. J Forest Econ 13:75–102. doi:10.1016/j.jfe.2007.02.005

    Article  Google Scholar 

  12. Clavel J, Julliard R, Devictor V (2010) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9(4):222–228. doi:10.1890/080216

    Article  Google Scholar 

  13. Cross MS, Zavaleta ES, Bachelet D, Brooks ML, Enquist CAF, Fleishman E, Graumlich LJ, Groves CR, Hannah L, Hansen L, Hayward G, Koopman M, Lawler JJ, Malcolm J, Nordgren J, Petersen B, Rowland EL, Scott D, Shafer SL, Shaw MR, Tabor GM (2012) The Adaptation for Conservation Targets (ACT) Framework: a Tool for Incorporating Climate Change into Natural Resource Management. Environ Manage 50(3):341–351. doi:10.1007/s00267-012-9893-7

    Article  Google Scholar 

  14. Cuttelod A, García N, Abdul Malak D, Temple H, Katariya V (2008) The Mediterranean: a biodiversity hotspot under threat. In: Vié J-C, Hilton-Taylor C, Stuart SN (eds) The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland, Switzerland, pp 1–13

    Google Scholar 

  15. Data provided by the Agència del Turisme de les Illes Balears for the II trimester of 2013 [http://www.caib.es/sacmicrofront/archivopub.do?ctrl=MCRST865ZI154103&id=154103 accessed in December 2013]

  16. Dawson TP, Berry PM, Kampa E (2003) Climate change impacts on freshwater wetland habitats. J Nat Conserv 11:25–30. doi:10.1078/1617-1381-00031

    Article  Google Scholar 

  17. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate Change Impacts on Marine Ecosystems. Annu. Rev. Mar. Sci. 4:11–37. doi:10.1146/annurev-marine-041911-111611

    Article  Google Scholar 

  18. Elliott M, Cutts ND, Trono A (2014) A typology of marine and estuarine hazards and risks as vectors of change: a review for vulnerable coasts and their management. Ocean Coast Manage 93:88–99. doi:10.1016/j.ocecoaman.2014.03.014

    Article  Google Scholar 

  19. El-Raey M (1997) Vulnerability Assesment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise. Ocean Coast Manag 37(1):29–40. doi:10.1016/S0964-5691(97)00056-2-&gt

    Article  Google Scholar 

  20. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manage 17(1):71–84. doi:10.1007/s11273-008-9119-1

    Article  Google Scholar 

  21. Espais de Natura Balear – Conselleria de Medi Ambient (2008) Memòria informativa. In: Estudi Hidrològic de la zona humida de S’Albufera (2007-2009). Gabinet d’Anàlisi Ambiental i Territorial (GaaT). Espais de Natura Balear–Conselleria de Medi Ambient

  22. Fischer A, Weldesemaet YB, Czaijkowski M, Tadie D, Hanley N (2014) Trophy hunting for wildlife conservation? On sport hunters’ willingness to pay for conservation and community benefits. Paper presented at the 16th Bioecon Conference, Cambridge (UK), 21–23 September 2014

  23. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105(3–4):121–139. doi:10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  24. Garssen AG, Verhoeven JTA, Soons MB (2014) Effects of climate-induced increases in summer drought on riparian plant species: a meta-analysis. Freshwater Biol 59(5):1052–1063. doi:10.1111/fwb.12328

    Article  Google Scholar 

  25. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63(2–3):90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  26. Hanemann WM (1984) Welfare evaluations in contingent valuation experiments with discrete responses. Am J Agr Econ 66(3):332–341. doi:10.2307/1240800

    Article  Google Scholar 

  27. Hanley N, MacMillan D, Wright RE, Bullock C, Simpson I, Parsisson D, Crabtree B (1998) Contingent Valuation Versus Choice Experiments: estimating the Benefits of Environmentally Sensitive Areas in Scotland. J Agr Econ 49(1):1–15. doi:10.1111/j.1477-9552.1998.tb01248.x

    Article  Google Scholar 

  28. Hanley N, Mourato S, Wright RE (2001) Choice Modelling Approaches: a Superior Alternative for Environmental Valuation? J Econ Surv 15(3):435–462. doi:10.1111/1467-6419.00145

    Article  Google Scholar 

  29. Hobday AJ, Mapstone B, Connolly R, Hughes T, Marshall P, McDonald J, Waschka M (2009) Adaptation to Climate Change. In: Poloczanska ES, Hobday AJ, Richardson AJ (eds.) A Marine Climate Change Impacts and Adaptation Report Card for Australia 2009. NCCARF Publication 05/09, ISBN 978-1-921609-03-9

  30. Hole AR (2007) A comparison of approaches for estimating confidence intervals for willingness to pay measures. Health Econ 16:827–840. doi:10.1002/hec.1197

    Article  Google Scholar 

  31. IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  32. Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffmann CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE, Beklioglu M, Meerhoff M, Özen A, Özkan K (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21. doi:10.1007/s10750-010-0547-6

    Article  CAS  Google Scholar 

  33. Jin C (2008) Biodiversity dynamics of freshwater wetland ecosystems affected by secondary salinisation and seasonal hydrology variation: a model-based study. Hydrobiologia 598(1):257–270. doi:10.1007/s10750-007-9161-7

    Article  Google Scholar 

  34. Johnson WC, Millett BV, Gilmanov T, Voldseth RA, Guntensperger GR, Naugle DE (2005) Vulnerability of northern prairie wetlands to climate change. Bioscience 55(10):863–872. doi:10.1641/0006-3568(2005)055[0863:VONPWT]2.0.CO;2

    Article  Google Scholar 

  35. Kingsford RT (2011) Conservation management of rivers and wetlands under climate change: a synthesis. Mar Freshwater Res 62:217–222. doi:10.1071/MF11029

    Article  CAS  Google Scholar 

  36. Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, Reef R, Chen L (2014) How mangrove forests adjust to rising sea level. New Phytol 202:19–34. doi:10.1111/nph.12605

    Article  Google Scholar 

  37. Lee TH (2011) How recreation involvement, place attachment and conservation commitment affect environmentally responsible behavior. J Sustain Tour 19(7):895–915. doi:10.1080/09669582.2011.570345

    Article  Google Scholar 

  38. Lemoine N, Schaefer HC, Böhning-Gaese K (2007) Species richness of migratory birds is influenced by global climate change. Global Ecol. Biogeogr. 16:55–64. doi:10.1111/j.1466-8238.2006.00252.x

    Article  Google Scholar 

  39. Lougheed VL, McIntosh MD, Parker CA, Stevenson RJ (2008) Wetland degradation leads to homogenization of biota at multiple trophic levels and spatial scales. Freshwat Biol 53(12):2402–2413. doi:10.1111/j.1365-2427.2008.02064.x

    Article  Google Scholar 

  40. Luisetti T, Turner RK, Bateman IJ, Morse-Jones S, Adams C, Fonseca L (2011) Coastal and marine ecosystem services valuation for policy and management: managed realignment case studies in England. Ocean Coast Manage 54:212–224. doi:10.1016/j.ocecoaman.2010.11.003

    Article  Google Scholar 

  41. Lundhede TH, Jacobsen JB, Thorsen BJ, Hanley N (2012) Incorporating Provision Uncertainty in Choice Experiment Valuation Studies. Paper presented at the IV workshop on Valuation Methods in Agro-Food and Environmental Economics: “Methodological and Empirical challenges in Valuation methods”, 12–13 July 2012, Castelldefels (Barcelona)

  42. Lundhede TH, Jacobsen JB, Fjeldså J, Rahbek C, Strange N, Thorsen BJ, Hanley N (2013) Public support for conserving bird species runs counter to climate change impacts on their distributions. Paper presented at Bioecon conference, Cambridge 18–21 September 2013.

  43. Luo Y, Deng J (2008) The new environmental paradigm and nature-based tourism motivation. J Trav Res 46(4):392–402. doi:10.1177/0047287507308331

    Article  Google Scholar 

  44. Marco-Barba J, Mesquita-Joanes F, Miracle MR (2013) Ostracod palaeolimnological analysis reveals drastic historical changes in salinity, eutrophication and biodiversity loss in a coastal Mediterranean lake. The Holocene 0(0): 1–12. doi: 10.1177/0959683612466752

  45. Marton-Lefèvre J, McCool S (2008) Natural Capital stewardship: a basis for travel and tourism competitiveness. In: Blanke J, Chiesa T (eds) The Travel & Tourism Competitiveness Report 2008: balancing Economic Development and Environmental Sustainability. World Economic Forum, Geneva, pp 57–62

    Google Scholar 

  46. McFadden D (1974) Conditional logit analysis of qualitative choice behavior. In: Zarembka P (ed) Frontiers in Econometrics. Academic Press, New York, pp 105–142

    Google Scholar 

  47. McFadden D, Train K (2000) Mixed MNL models of discrete response. J Appl Econometrics 15(5):447–470

    Article  Google Scholar 

  48. Mediterranean Wetlands - Outlook (2012) First Mediterranean Wetlands Observatory report–Synthesis for decision makers. Tour du Valat (France), pp 72

  49. Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC

    Google Scholar 

  50. Mortsch L, Ingram J, Hebb A, Doka S (2006) Great Lakes Coastal Wetland Communities: Vulnerability to Climate Change and Response to Adaptation Strategies. Final report submitted to the Climate Change Impacts and Adaptation Program, Natural Resources Canada. Environment Canada and the Department of Fisheries and Oceans, Toronto, Ontario, pp 251 + appendices

  51. Nicholls RJ, Hoozemans FMJ (1996) The Mediterranean: vulnerability to coastal implications of climate change. Ocean Coast Manag 31(2–3):105–132. doi:10.1016/S0964-5691(96)00037-3

    Article  Google Scholar 

  52. Norberg J, Wilson J, Walker B, Ostrom E (2008) Diversity and resilience of social-ecological systems. In: Norberg J, Cumming GS (eds) Complexity theory for a sustainable future. Columbia University Press, New York Chichester, pp 46–80

    Google Scholar 

  53. Palmer MA, Lettenmaier DP, Poff NL, Postel SL, Richter B, Warner R (2009) Climate Change and River Ecosystems: protection and Adaptation Options. Environ Manage 44:1053–1068. doi:10.1007/s00267-009-9329-1

    Article  Google Scholar 

  54. Parc Natural de S’Albufera de Mallorca (2005) Guia de, Passeig edn. Conselleria de Medi Ambient, Govern de les Illes Balears

    Google Scholar 

  55. Ramsar Convention Secretariat (2010) Wise use of wetlands: Concepts and approaches for the wise use of wetlands. Ramsar handbooks for the wise use of wetlands, 4th edition, vol. 1. Ramsar Convention Secretariat, Gland, Switzerland

  56. Riddiford NJ, Veraart JA, Férriz I, Owens NW, Royo L, Honey MR (2014) The Albufera Initiative for Biodiversity: a cost effective model for integrating science and volunteer participation in coastal protected area management. J Integr Coast Zone Manage 14(2):267–288. doi:10.5894/rgci475

    Google Scholar 

  57. Robledano F, Esteve MA, Farinós P, Carreño MF, Martínez-Fernández J (2010) Terrestrial birds as indicators of agricultural-induced changes and associated loss in conservation value of Mediterranean wetlands. Ecol Indicat 10(2):274–286. doi:10.1016/j.ecolind.2009.05.006

    Article  Google Scholar 

  58. Robson D, Barriocanal C (2011) Ecological conditions in wintering and passage areas as determinants of timing of spring migration intrans-Saharan migratory birds. J Anim Ecol 80:320–331

    Article  Google Scholar 

  59. Rolfe J, Windle J (2010) Valuing Protection of the Great Barrier Reef with choice modeling by management policy options. Research Report 57, Crawford School of Economics and Government, The Australian National University

  60. Rose JM, Bliemer MCJ (2009) Constructing efficient stated choice experimental designs. Transport Rev 29(5):587–617. doi:10.1080/01441640902827623

    Article  Google Scholar 

  61. Russi D, ten Brink P, Farmer A, Badura T, Coates D, Förster J, Kumar R, Davidson N (2013) The Economics of Ecosystems and Biodiversity for Water and Wetlands. Ramsar Secretariat, Gland, IEEP, London and Brussels

    Google Scholar 

  62. Sato M, Riddiford N (2008) A preliminary study of the Odonata of S’Albufera Natural Park, Mallorca: status, conservation priorities and bio-indicator potential. J Insect Cons 12(5):539–548. doi:10.1007/s10841-007-9094-5

    Article  Google Scholar 

  63. Secretariat of the Ramsar Convention on Wetlands & World Tourism Organization (2012) Destination wetlands: supporting sustainable tourism. Secretariat of the Ramsar Convention on Wetlands, Gland, Switzerland, & World Tourism Organization (UNWTO), Madrid, Spain

  64. Seilheimer TS, Mahoney TP, Chow-Fraser P (2009) Comparative study of ecological indices for assessing human-induced disturbance in coastal wetlands of the Laurentian Great Lakes. Ecol Indicat 9(1):81–91. doi:10.1016/j.ecolind.2008.02.001

    Article  Google Scholar 

  65. Shrestha RK, Stein TV, Clark J (2007) Valuing nature-based recreation in public natural areas of the Apalachicola River region. Florida. J Environ Manag 85(4):977–985. doi:10.1016/j.jenvman.2006.11.014

    Article  Google Scholar 

  66. Snoussi M, Ouchani T, Niazi S (2008) Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuar Coast Shelf Sci 77(2):206–213. doi:10.1016/j.ecss.2007.09.024

    Article  Google Scholar 

  67. Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci USA 106(Suppl 2):19637–19643. doi:10.1073/pnas.0901562106

    Article  CAS  Google Scholar 

  68. Tong L, Xu X, Fu Y, Li S (2014) Wetland changes and their response to climate change in the “three-river headwaters” region of China since the 1990s. Energies 7:2515–2534. doi:10.3390/en7042515

    Article  Google Scholar 

  69. Torres CM, Riera A, García D (2009). Are preferences for water quality different for second-home residents? Tourism Econ 15(3): 629-651. doi: http://dx.doi.org/10.5367/000000009789036620

  70. Torres CM, Hanley N, Riera A (2011) How wrong can you be? Implications of incorrect utility function specification for welfare measurement in choice experiments. J Environ Econ Manag 62:111–121. doi:10.1016/j.jeem.2010.11.007

    Article  Google Scholar 

  71. Train K (2009) Discrete Choice Models with simulation. Cambridge University Press, Cambridge

    Google Scholar 

  72. Walpole MJ, Thouless CR (2005) Increasing the value of wildlife through non-consumptive use? Deconstructing the myths of ecotourism and community-based tourism in the tropics. In: Woodroffe R, Thirgood S, Rabinowitz A (eds) People and Wildlife Conflict or Coexistence. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  73. Waterkeyn A, Grillas P, Vanschoenwinkel B, Brendonck L (2008) Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biol 53:1808–1822. doi:10.1111/j.1365-2427.2008.02005.x

    Article  CAS  Google Scholar 

  74. Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC (2008) Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. PNAS 105(44):17029–17033. doi:10.1073/pnas.0806446105

    Article  CAS  Google Scholar 

  75. Withey P, van Kooten GC (2011) The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecol Econ 70(4):798–805. doi:10.1016/j.ecolecon.2010.11.019

    Article  Google Scholar 

Download references

Acknowledgments

This research work has been conducted under the Training Program for University Professors of the Spanish Ministry of Education, Culture, and Sport (AP2010-3810). The authors are also grateful for the funds awarded by the Government of the Balearic Islands through the Special Action Program (AAEE025/2012), the financial support from the CICYT Program of the Spanish Government (ECO2010-22143), and the grant from the 2013 CRF/RSE European Visiting Research Fellowships Program of the Caledonian Research Foundation. None of these funding sources intervened in or had any effect on the undertaking of this research work. We would like to thank three anonymous referees for their valuable comments, suggestions, and fruitful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michela Faccioli.

Appendix

Appendix

See Table 6.

Table 6 Example of choice set

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faccioli, M., Riera Font, A. & Torres Figuerola, C.M. Valuing the Recreational Benefits of Wetland Adaptation to Climate Change: A Trade-off Between Species’ Abundance and Diversity. Environmental Management 55, 550–563 (2015). https://doi.org/10.1007/s00267-014-0407-7

Download citation

Keywords

  • Climate change
  • Wetland adaptation
  • Species’ diversity
  • Species’ abundance
  • Recreational benefits
  • Choice experiment