Skip to main content

Advertisement

Log in

Spatial Analysis of Soil Subsidence in Peat Meadow Areas in Friesland in Relation to Land and Water Management, Climate Change, and Adaptation

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1–2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andriesse JP (1988) Nature and management of tropical peat soils. FAO, Rome

    Google Scholar 

  • Berg B, Meentemeyer V (2002) Litter quality in a north European transect versus carbon storage potential. Plant Soil 242:83–92

    Article  CAS  Google Scholar 

  • Berglund Ö, Berglund K, Klemedtsson L (2008) A lysimeter study on the effect of temperature on CO2 emission from cultivated peat soils. Geoderma 154:211–218

    Article  Google Scholar 

  • Best EPH, Jacobs FHH (1997) The influence of raised water table levels on carbon dioxide and methane production in ditch-dissected peat grasslands in the Netherlands. Ecol Eng 8:129–144

    Article  Google Scholar 

  • Brouns K, Verhoeven JTA, Hefting MM (2014) Short period of oxygenation releases latch on peat decomposition. Sci Total Environ 481:61–68

    Article  CAS  Google Scholar 

  • Camporese M, Gambolati G, Putti M, Teatini P (2006) Peatland subsidence in the Venice watershed. In: Martini IP, Martínez Cortizas A, Chesworth W (eds) Peatlands evolution and records of environmental and climate changes. Elsevier, Amsterdam, pp 529–550

    Chapter  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  Google Scholar 

  • Dawson Q, Kechavarzi C, Leeds-Harrison PB, Burton RGO (2010) Subsidence and degradation of agricultural peatlands in the Fenlands of Norfolk, UK. Geoderma 154:181–187

    Article  CAS  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619

    Article  CAS  Google Scholar 

  • Egglesman R (1976) Peat consumption under the influence of climate, soil condition, and utilisation. In Proceedings of the 5th International Peat Congress, Poznan, pp 233–247

  • Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nat Geosci 4:895–900

    Article  CAS  Google Scholar 

  • Gambolati G, Putti M, Teatini P, Camporese M, Ferraris S, Gasparetto Stori G, Nicoletti V, Silvestri S, Rizzetto F, Tosi L (2005) Peat land oxidation enhances subsidence in the Venice watershed. Eos 86:217–224

    Article  Google Scholar 

  • Gebhardt S, Fleige H, Horn R (2010) Shrinkage processes of a drained riparian peatland with subsidence morphology. J Soils Sediments 10:484–493

    Article  CAS  Google Scholar 

  • Hellmann F, Vermaat JE (2012) Impact of climate change on water management in Dutch peat polders. Ecol Model 240:74–83

    Article  Google Scholar 

  • Hoogland T, van den Akker JJH, Brus DJ (2012) Modelling the subsidence of peat soils in the Dutch coastal area. Geoderma 171–172:92–97

    Article  Google Scholar 

  • Hoving I, Van den Akker JJH, Hendriks RFA (2004) Zegveld gaat zakken veengrond te lijf. PraktijkKompas Rundvee

  • Janssen FB (1986) Maaivelddalingen in het Friese veenweidegebied. Cultuurtechnisch Tijdschrift 26:245–252

    Google Scholar 

  • Janssen R, Eikelboom TE, Brouns K, Jansen PC, Kwakernaak C, Verhoeven JTA (2013) Verslag workshops Friese Veenweidevisie Kennis voor Klimaat, Amsterdam

  • Janssen R, Eikelboom T, Brouns K, Verhoeven JTA (2014) Using geodesign to develop a spatial adaption strategy for Friesland. In: Lee D, Dias E, Scholten HJ (eds) Geodesign by integrating design and geospatial sciences. Springer, New York. pp 103–116

  • Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • MNP (2005) Effecten van klimaatverandering in Nederland. MNP, Bilthoven, p 112

    Google Scholar 

  • Nieuwenhuis HS, Schokking F (1997) Land subsidence in drained peat areas of the Province of Friesland, the Netherlands. Q J Eng Geol 30:37–48

    Article  Google Scholar 

  • Olde-Venterink H, Davidsson TE, Kiehl K, Leonardson L (2002) Impact of drying and re-wetting on N, P and K dynamics in a wetland soil. Plant Soil 243:119–130

    Article  Google Scholar 

  • Provincie Noord-Holland (2012) Kosten & baten van scenario’s voor Laag Holland Provincie Noord-Holland, Hoofddorp

  • Querner EP, Jansen PC, Kwakernaak C (2008) Effects of water level strategies in dutch peatlands: a scenario study for the polder Zegveld. In: Proceedings of the 13th International Peat Congress: after wise use—the future of Peatlands, Tullamore, Ireland, 8–13 June, 2008. Tullamore, Ireland, 2008:620–623

  • Querner EP, Jansen PC, van den Akker JJH, Kwakernaak C (2012) Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J Hydrol 446–447:59–69

    Article  Google Scholar 

  • Rienks WA, Gerritsen AL, Meulenkamp WJH (2002) Behoud veenweidegebied: een ruimtelijke verkenning. Alterra-rapport 563, Alterra, Research Institute voor de Groene Ruimte, Wageningen, 2002

  • Schipper LA, McLeod M (2002) Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zealand. Soil Use Manag 18:91–93

    Article  Google Scholar 

  • Schothorst CJ (1977) Subsidence of low moor peat soils in the western Netherlands. Geoderma 17:265–291

    Article  Google Scholar 

  • Schouwenaars JM (2002) Water levels in the Echten polder: improving agriculture and reducing land subsidence 273. International Association of Hydrologcial Sciences, Wageningen

  • Schrier-Uijl AP, Kroon PS, Leffelaar PA, van Huissteden JC, Berendse F, Veenendaal EM (2010) Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant Soil 329:509–520

    Article  CAS  Google Scholar 

  • Stowa (2005) Help-2005, Uitbreiding en actualisering van de help-tabellen ten behoeve van het waternood-instrumentarium. Rapport 2005–16 STOWA, Utrecht

  • TNO (2007) Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences, Amsterdam

    Google Scholar 

  • Van Beek CL, Droogers P, Van Hardeveld HA, Van Den Eertwegh GAPH, Velthof GL, Oenema O (2007) Leaching of solutes from an intensively managed peat soil to surface water. Water Air Soil Pollut 182:291–301

    Article  CAS  Google Scholar 

  • Van de Riet BP, Hefting MM, Verhoeven JTA (2013) Rewetting drained peat meadows: risks and benefits in terms of nutrient release and greenhouse gas exchange. Water Air Soil Pollut 224:1–12

    CAS  Google Scholar 

  • Van den Akker JJH, Beuving J, Hendriks RFA, Wolleswinkel RJ (2007) Maaivelddaling, afbraak en CO2 emissie van Nederlandse veenweidegebieden. Leidraad Bodembescherming, afl. 83, Sdu, Den Haag, 32 p 83:32

  • Van den Akker JJH, Kuikman PJ, De Vries F, Hoving I, Pleijter M, Hendriks RFA, Wolleswinkel RJ, Simões RTL, Kwakernaak C (2008) Emission of CO2 from agricultural peat soils in the Netherlands and ways to limit this emission. In: Farrel C, Feehan J (eds) Proceedings of the 13th International Peat Congress. International Peat Society, Jyväskylä, pp 645–648

  • Van den Hurk B, Klein Tank A, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, Van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI climate change scenarios 2006 for the Netherlands. KNMI, De Bilt

  • Wesseling JG (1985) De invloed van bodemsoort en vochtgehalte op de bodemtemperatuur nota 1645:27. Instituut voor Cultuurtechniek en Waterhuishouding, Wageningen

  • Witte J, Runhaar H, Van Ek R, Van der Hoek D (2009) Eerste landelijke schets van de ecohydrologische effecten van een warmer en grilliger klimaat. H2O 16–17:37–40

    Google Scholar 

  • Zak D, Gelbrecht J, Wagner C, Steinberg CEW (2008) Evaluation of phosphorus mobilization potential in rewetted fens by an improved sequential chemical extraction procedure. Eur J Soil Sci 59:1191–1201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the research program Knowledge for Climate (Kennis voor Klimaat), hotspot ‘shallow waters and peat meadow areas’ project code HSOV1a. We would like to acknowledge Dr. Ir. M.M. Hefting for reviewing the manuscript and making valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlijn Brouns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouns, K., Eikelboom, T., Jansen, P.C. et al. Spatial Analysis of Soil Subsidence in Peat Meadow Areas in Friesland in Relation to Land and Water Management, Climate Change, and Adaptation. Environmental Management 55, 360–372 (2015). https://doi.org/10.1007/s00267-014-0392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-014-0392-x

Keywords

Navigation