Skip to main content


Log in

Freedom Space for Rivers: A Sustainable Management Approach to Enhance River Resilience

  • Published:
Environmental Management Aims and scope Submit manuscript


River systems are increasingly under stress and pressure from agriculture and urbanization in riparian zones, resulting in frequent engineering interventions such as bank stabilization or flood protection. This study provides guidelines for a more sustainable approach to river management based on hydrogeomorphology concepts applied to three contrasted rivers in Quebec (Canada). Mobility and flooding spaces are determined for the three rivers, and three levels of “freedom space” are subsequently defined based on the combination of the two spaces. The first level of freedom space includes very frequently flooded and highly mobile zones over the next 50 years, as well as riparian wetlands. It provides the minimum space for both fluvial and ecological functionality of the river system. On average for the three studied sites, this minimum space was approximately 1.7 times the channel width, but this minimum space corresponds to a highly variable width which must be determined from a thorough hydrogeomorphic assessment and cannot be predicted using a representative average. The second level includes space for floods of larger magnitude and provides for meanders to migrate freely over a longer time period. The last level of freedom space represents exceptional flood zones. We propose the freedom space concept to be implemented in current river management legislation because it promotes a sustainable way to manage river systems, and it increases their resilience to climate and land use changes in comparison with traditional river management approaches which are based on frequent and spatially restricted interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  • Arnaud-Fassetta G, Astrade L, Bardou E, Corbonnois J, Delahaye D, Fort M, Gautier E, Jacob N, Peiry JL, Piégay H, Penven MJ (2009) Fluvial geomorphology and flood-risk management. Géomorphologie 2:109–128

    Article  Google Scholar 

  • Baker VR (1976) Hydrogeomorphic methods for the regional evaluation of flood hazards. Environ Geol 1(5):261–281

    Article  Google Scholar 

  • Baker VR (1994) Geomorphological understanding of floods. Geomorphology 10:39–156

    Article  Google Scholar 

  • Ballais JL, Garry G, Masson M (2005) Contribution de l’hydrogéomorphologie à l’évaluation du risque d’inondation: le cas du Midi méditerranéen français. Géoscience 337:1120–1130

    Article  Google Scholar 

  • Baptist MJ, Penning WE, Duel H, Smits AJM, Geerling GW, van der Lee GEM, van Alphen JSL (2004) Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine river. River Res Appl 20(3):285–297

    Article  Google Scholar 

  • Beechie TJ, Sear DA, Olden JD, Pess GR, Buffington JM, Moir H, Roni P, Pollock MM (2010) Process-based principles for restoring river ecosystems. Bioscience 60(3):209–222

    Article  Google Scholar 

  • Biron PM, Choné G, Buffin-Bélanger T, Demers S, Olsen T (2013a) Improvement of streams hydro-geomorphological assessment using LiDAR DEMs. Earth Surf Proc Land 38(15):1808–1821

    Article  Google Scholar 

  • Biron PM, Buffin-Bélanger T, Larocque M, Demers S, Olsen T, Ouellet MA, Choné G, Cloutier CA, Needelman M (2013b) Espace de liberté: un cadre de gestion intégrée pour la conservation des cours d’eau dans un contexte de changements climatiques. Ouranos report #510014-101. Accessed 12 Mar 2014

  • Bravard JP, Amoros C, Pautou G, Bornette G, Bournaud M, Creuzé des Châtelliers M, Gibert J, Peiry JL, Perrin JF, Tachet H (1997) River incision in south-east France: morphological phenomena and ecological effects. Regul Rivers: Res Manage 13:75–90

    Article  Google Scholar 

  • Bravard JP, Provansal M, Arnaud-Fasseta G, Chabbert S, Gaydou P, Dufour S, Richard F, Valleteau S, Melun G, Passy P (2008) Un atlas du paléo-environnement de la plaine alluviale du Rhône de la frontière suisse à la mer. Edytem 6:101–116

    Google Scholar 

  • Brierley GJ, Fryirs KA (2005) Geomorphology and river management: applications of the river styles framework. Blackwell Publishing, Malden

    Google Scholar 

  • Brooks RP, Brinson MM, Havens KJ, Hershner CS, Rheinhardt RD, Wardrop DH, Whigham DF, Jacobs AD, Rubbo JM (2011) Proposed hydrogeomorphic classification for wetlands of the Mid-Atlantic region, USA. Wetlands 31(2):207–219

    Article  Google Scholar 

  • Buntley BT, Westin FC (1965) A comparative study of developmental colour in a Chestnut-Chernozem-Brunizem soil climosequence. Soil Sci Soc Am J 29(5):579–582

    Article  Google Scholar 

  • CSCW—Canadian Soil Classification Working Group (1998) The Canadian system of soil classification. National Research Council, Ministry of Agriculture and Agri-Food Canada, Publication 1646, 3rd edition, Ottawa. Accessed 12 Mar 2014

  • Curran JH, McTeague MH (2011) Geomorphology and bank erosion of the Matanuska River, southcentral Alaska. U.S. Geological Survey Scientific Investigations Report 2011-5214. Accessed 12 Mar 2014

  • Defra—Department of Food and Rural Affairs (2005) Making space for water, taking forward a new government strategy for flood and coastal erosion risk management in England. Accessed 12 Mar 2014

  • Demers S, Olsen T, Buffin-Bélanger T, Marchand JP, Biron PM, Morneau F (2014) L’hydrogéomorphologie appliquée à la gestion de l’aléa d’inondation en climat tempéré froid: l’exemple de la rivière Matane (Québec). Physio-Géo 8:67–88

    Article  Google Scholar 

  • Dunne T, Aalto RE (2013) Large river floodplains. In: Shroder JF (ed) Treatise on geomorphology, vol 9. Academic Press, San Diego, pp 645–678

    Chapter  Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Florsheim JL, Mount JF, Chin A (2008) Bank erosion as a desirable attribute of rivers. Bioscience 58(6):519–529

    Article  Google Scholar 

  • Garry G, Ballais JL, Masson M (2002) La place de l’hydrogéomorphologie dans les études d’inondation en France méditerranéenne. Géomorphologie 8(1):5–15

    Article  Google Scholar 

  • Graf WL (2000) Locational probability for a dammed, urbanizing stream: Salt River, Arizona, USA. Environ Manage 25(3):321–335

    Article  Google Scholar 

  • Hillman M, Brierley G (2005) A critical review of catchment-scale stream rehabilitation programmes. Prog Phys Geogr 29(1):50–70

    Article  Google Scholar 

  • Hooke J (1980) Magnitude and distribution of rates of river bank erosion. Earth Surf Process 5(2):143–157

    Article  Google Scholar 

  • Hooke J (2003) River meander behaviour and instability: a framework for analysis. Trans Inst Br Geogr 28(2):238–253

    Article  Google Scholar 

  • Jarrett RD, England JF Jr (2002) Reliability of paleostage indicators for paleoflood studies. In: House PK, Webb RH, Baker VR, Levish DR (eds) Ancient floods, modern hazards: principles and applications of paleoflood hydrology. Water Science and application, vol 5. American Geophysical Union, Washington, DC, pp 91–109

    Google Scholar 

  • Keddy PA (2010) Wetland ecology: principles and conservation, 2nd edn. Cambrigde University Press, New York

    Book  Google Scholar 

  • Kline M, Cahoon B (2010) Protecting river corridors in Vermont. J Am Water Resour Assoc 46(2):227–236

    Article  Google Scholar 

  • Kline M, Dolan K (2008) River corridor protection guide: fluvial geomorphic-based methodology to reduce flood hazards and protect water quality. Vermont Agency of Natural Resources, Waterbury, VT. Accessed 12 Mar 2014

  • Knighton D (1998) Fluvial forms and processes. Arnold, New York

    Google Scholar 

  • Kondolf MG (2011) Setting goals in river restoration: when and where can the river “Heal itself”? In: Simon A, Bennett SJ, Castro JM (eds) Stream restoration in dynamic fluvial systems: scientific approaches, analyses, and tools, vol 194. American Geophysical Union, Washington, DC, pp 29–43

    Google Scholar 

  • Konrad C, Berge H, Fuerstenberg R, Steff K, Olsen T, Guyenet J (2011) Channel dynamics in the Middle Green River, Washington, from 1936 to 2002. Northwest Sci 85(1):1–14

    Article  Google Scholar 

  • Lambert R, Prunet C (2000) L’approche géographique de l’inondation. L’exemple de la Garonne à l’aval de Toulouse. In: Bravard J-P (ed) Les régions françaises face aux extrêmes hydrologiques: Gestion des excès et de la pénurie. SEDES, Mobilité spatiale collection. SEDES, Paris, pp 39–53

    Google Scholar 

  • Lane SN, Tayefi V, Reid SC, Yu D, Hardy RJ (2007) Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surf Process Land 32(3):429–446

    Article  Google Scholar 

  • Lane SN, Tayefi V, Reid SC, Yu D, Hardy RJ (2008) Reconceptualising coarse sediment delivery problems in rivers as catchment-scale and diffuse. Geomorphology 98(3–4):227–249

    Article  Google Scholar 

  • Lastra J, Fernandez E, Diez-Herrero A, Marquinez J (2008) Flood hazard delineation combining geomorphological and hydrological methods: an example in the Northern Iberian Peninsula. Nat Hazards 45(2):277–293

    Article  Google Scholar 

  • Lelièvre MA, Buffin-Bélanger T, Morneau F (2008) L’approche hydrogéomorphologique pour la cartographie des zones à risque d’inondation dans les vallées de petites et moyennes tailles: un exemple commenté pour la vallée de la Rivière-au-Renard. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Comptes rendus de la 4e Conférence canadienne sur les géorisques des causes à la gestion. Presse de l’Université Laval, Quebec, pp 421–428

    Google Scholar 

  • Levish DR (2002) Paleohydrologic bounds: non-exceedance information for flood hazard assessment. In: House PK, Webb RH, Baker VR, Levish DR (eds) Ancient floods, modern hazards: principles and applications of paleoflood hydrology. Water science and application, vol 5. American Geophysical Union, Washington, DC, pp 175–190

    Google Scholar 

  • Lewin J, Ashworth PJ (2014) The negative relief of large river floodplains. Earth Sci Rev 129:1–23

    Article  Google Scholar 

  • Malavoi JR, Bravard JP, Piégay H, Hérouin E, Ramez P (1998) Détermination de l’espace de liberté des cours d’eau. Guide technique no. 2, SDAGE RMC. Accessed 12 Mar 2014

  • Masson M, Garry G, Ballais JL (1996) Cartographie des zones inondables: approche hydrogéomorphologique. Ministère de l’Équipement et ministère de l’Environnement. Paris La Défense, Les éditions Villes et Territoires

  • MDDEP—Ministère du Développement Durable, de l’Environnement et des Parcs (2011) Cartographie des milieux humides potentiels—Structure physique des données. Gouvernement du Québec

  • MDDEP (2012) Cartographie détaillée des milieux humides des Basses terres du Saint-Laurent et de la plaine du lac Saint-Jean—Structure physique des données. MDDEP and Ducks Unlimited Québec, Gouvernement du Québec

  • Merwade V, Olivera F, Arabi M, Edleman S (2008) Uncertainty in flood inundation mapping: current issues and future directions. J Hydrol Eng 13(7):608–620

    Article  Google Scholar 

  • Nanson GC, Croke JC (1992) A genetic classification of floodplains. Geomorphology 4:459–486

    Article  Google Scholar 

  • O’Connor JE, Jones MA, Haluska TL (2003) Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA. Geomorphology 51:31–59

    Article  Google Scholar 

  • Ollero A (2010) Channel changes and floodplain management in the meandering middle Ebro River, Spain. Geomorphology 117(3–4):247–260

    Article  Google Scholar 

  • Parish Geomorphic (2004) Belt Width Delineation Procedures. Report 98-023 submitted to the Toronto and Region Conservation Authority. Accessed 12 Mar 2014

  • Piégay H, Cuaz M, Javelle E, Mandier P (1997) Bank erosion management based on geomorphological, ecological and economic criteria on the Galaure River, France. Regul Rivers: Res Manage 13(5):433–448

    Article  Google Scholar 

  • Piégay H, Darby SE, Mosselman E, Surian N (2005) A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Res Appl 21(7):773–789

    Article  Google Scholar 

  • Québec (2002) L’eau. La vie. L’avenir. Politique nationale de l’eau. Québec, Ministère de l’Environnement du Québec. Accessed 23 Feb 2014

  • Québec (2005) Politique de protection des rives, du littoral et des plaines inondables. Québec, Gouvernement du Québec. Accessed 12 Mar 2014

  • Québec (2009) Loi affirmant le caractère collectif des ressources en eau et visant à renforcer leur protection. Québec, Gouvernement du Québec. Accessed 23 Feb 2014

  • Rapp CF, Abbe TB (2003) A framework for delineating channel migration zones. Ecology Publication #03-06-027. Washington State Department of Ecology and Department of Transportation, Olympia, WA. Accessed 12 Mar 2014

  • Roni P, Beechie T (2013) Stream and watershed restoration: a guide to restoring riverine processes and habitats. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  • Saint-Laurent D, Lavoie L (2009) Récurrence des inondations et édification des plaines alluviales des bassins du centre-sud du Québec (Canada). Revue des Sciences de l’Eau 22(1):51–68

    Article  Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichich JL, Ergul A (2009) Digital Shoreline Analysis System (DSAS) version 4.0—an ArcGIS extension for calculating shoreline change. U.S. Geological Survey Open-File Report 2008-1278. Accessed 12 Mar 2014

  • Thompson A, Clayton J (2002) The role of geomorphology in flood risk assessment. Proc ICE 150:25–29

    Article  Google Scholar 

  • VANR—Vermont Agency of Natural Resources (2006) Vermont regional hydraulic geometry curves. Vermont stream geomorphic assessment—appendix J. Vermont Agency of Natural Resources, River Management Program. Accessed 23 Feb 2014

Download references


This project was funded by the climate change consortium Ouranos as part of the “Fonds vert” for the implementation of the Quebec Government Action Plan 2006–2012 on climate change. We thank the Ministère de la Sécurité Publique du Québec for giving us access to their LiDAR data in the Matane watershed. The help and support of Simon Lajeunesse (MRC Brome-Missisquoi) and Nathalie Martel (Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs du Québec) was much appreciated. Thanks also to the field assistants involved in this project: Diogo Barnetche, Johan Bérubé, Maxime Boivin, Larissa Holman, Ariane Lelièvre, Lecia Mancini, Jean-Philippe Marchand, William Massey, Antonin Montané, Véronic Parent, Fernanda Paulo de Oliveira, Pierre Simard, Cyril Usnik and Svenja Voss. We thank the three anonymous reviewers for their detailed and constructive comments on a previous version of this manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pascale M. Biron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biron, P.M., Buffin-Bélanger, T., Larocque, M. et al. Freedom Space for Rivers: A Sustainable Management Approach to Enhance River Resilience. Environmental Management 54, 1056–1073 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: