Environmental Management

, Volume 53, Issue 4, pp 728–738 | Cite as

Model-Based Selection of Areas for the Restoration of Acrocephalus paludicola Habitats in NE Germany

  • Annett FrickEmail author
  • Franziska Tanneberger
  • Jochen Bellebaum


The global Aquatic Warbler (Acrocephalus paludicola, Vieillot, 1817) population has suffered a major decline due to the large-scale destruction of its natural habitat (fen mires). The species is at risk of extinction, especially in NE Germany/NW Poland. In this study, we developed habitat suitability models based on satellite and environmental data to identify potential areas for habitat restoration on which further surveys and planning should be focused. To create a reliable model, we used all Aquatic Warbler presences in the study area since 1990 as well as additional potentially suitable habitats identified in the field. We combined the presence/absence regression tree algorithm Cubist with the presence-only algorithm Maxent since both commonly outperform other algorithms. To integrate the separate model results, we present a new way to create a metamodel using the initial model results as variables. Additionally, a histogram approach was applied to further reduce the final search area to the most promising sites. Accuracy increased when using both remote sensing and environmental data. It was highest for the integrated metamodel (Cohen’s Kappa of 0.4, P < 0.001). The final result of this study supports the selection of the most promising sites for Aquatic Warbler habitat restoration.


Aquatic Warbler Species distribution model Presence-only Presence–absence Ensemble forecasting Conservation 



This research project was funded by Landesamt für Umwelt, Gesundheit und Verbraucherschutz Brandenburg in the years 2008–2010. FT was partly funded within a testing and developing project supported by the Federal Agency for Nature Conservation (BfN) with funds of the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety, Germany. We would also like to thank all the people who provided local ground assessments of modeling results.


  1. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22(1):42–47. doi: 10.1016/j.tree.2006.09.010 CrossRefGoogle Scholar
  2. Binzenhöfer B, Schröder B, Biedermann R, Strauss B, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths: the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259CrossRefGoogle Scholar
  3. BirdLife International (2012) Species factsheet: Acrocephalus paludicola. Accessed 30 July 2012
  4. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Chapman and Hall, New YorkGoogle Scholar
  5. Buchanan GM, Lachmann L, Tegetmeyer C, Oppel S, Nelson A, Flade M (2011) Identifying the potential wintering sites of the globally threatened Aquatic Warbler Acrocephalus paludicola using remote sensing. OSTRICH 82(2):81–85CrossRefGoogle Scholar
  6. Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Milá B, Graham CH (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr 35:1160–1176CrossRefGoogle Scholar
  7. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157. doi: 10.1111/j.1365-2486.2009.02000.x CrossRefGoogle Scholar
  8. Burley JB (2003) Habitat modeling: spatial landscape assessment at the Rigden Mine, Colorado. In: Barnhisel RI (ed) Working together for innovative reclamation. 9th Billings land reclamation symposium and American society for mining and reclamation. 20th annual national conference, Billings, pp 103–118Google Scholar
  9. Chan JCW, Paelinckx D (2008) Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens Environ 112:2999–3011CrossRefGoogle Scholar
  10. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psyschol Meas 20:37–46CrossRefGoogle Scholar
  11. Domíguez-Vega H, Monroy-Vilchis O, Balderas-Valdivia CJ, Gienger CM, Ariano-Sánchez D (2012) Predicting the potential distribution of the beaded lizard and identification of priority areas for conservation. J Nat Conserv 20:247–253CrossRefGoogle Scholar
  12. Dormann CF, Schweiger O, Arens P, Augenstein I, Aviron S, Bailey D, Baudry J et al (2008) Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecol Lett 11:235–244CrossRefGoogle Scholar
  13. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  14. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57CrossRefGoogle Scholar
  15. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  16. Flade M, Lachmann L (2008) International species action plan for the Aquatic Warbler Acrocephalus paludicola. BirdLife International. Accessed 23 July 2010
  17. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine learning: proceedings of the thirteenth international conference. 3–6 July 1996, Bari, Italy (Morgan Kaufmann, ISBN 1-55860-419-7), pp 148–156Google Scholar
  18. Graf R, Bollmann K, Sachot S, Suter W, Bugmann H (2006) On the generality of habitat distribution models: a case study of capercaillie in three Swiss regions. Ecography 29:319–328CrossRefGoogle Scholar
  19. Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modeling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17. doi: 10.1111/j.1600-0587.2010.06152.x CrossRefGoogle Scholar
  20. Haibo H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284. doi: 10.1109/TKDE.2008.239 CrossRefGoogle Scholar
  21. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefGoogle Scholar
  22. Jeganathan P, Green RE, Norris K, Vogiatzakis IN, Bartsch A, Wotton SR, Bowden CGR et al (2004) Modeling habitat selection and distribution of the critically endangered Jerdon’s courser Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method. J Appl Ecol 41:224–237CrossRefGoogle Scholar
  23. Jones CG (2004) Conservation management of endangered birds. In: Sutherland W, Newton I, Green RE (eds) Bird ecology and conservation. Oxford University Press, Oxford, pp 269–293CrossRefGoogle Scholar
  24. Joosten H, Clarke D (2002) Wise use of mires and peatlands. International Mire Conservation Group/International Peat Society, SaarijärviGoogle Scholar
  25. Kearns M, Mansour Y (1998) A fast, bottom-up decision tree pruning algorithm with near-optimal generalization. In: Proceedings of the 15th international conference on machine learning, pp 269–277Google Scholar
  26. Lachmann L, Marczakiewicz P, Grzywaczewski G (2010) Protecting Aquatic Warblers (Acrocephalus paludicola) through a landscape-scale solution for the management of fen peat meadows in Poland. Grassl Sci Eur 15:711–713Google Scholar
  27. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38(5):921–931. doi: 10.1046/j.1365-2664.2001.00647.x CrossRefGoogle Scholar
  28. Muñoz J, Felicísimo ÁM (2004) Comparison of statistical methods commonly used in predictive modeling. J Veg Sci 15:285–292CrossRefGoogle Scholar
  29. Oppel S, Meirinho A, Ramírez I, Gardner B, O’Connell AF, Miller PI, Louzao M (2011) Comparison of five modeling techniques to predict the spatial distribution and abundance of seabirds. Biol Conserv. doi: 10.1016/j.biocon.2011.11.013 Google Scholar
  30. Osborne PE, Alonso JC, Bryant RG (2001) Modeling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J Appl Ecol 38:458–471CrossRefGoogle Scholar
  31. Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711CrossRefGoogle Scholar
  32. Pearson RG, Raxworthy CJ, Nakamura M, Townsend P (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  33. Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  34. Phillips SJ, Dudik M, Schapire RE (2005) Maxent software for species distribution modeling. Accessed 23 July 2010
  35. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species’ geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  36. Podlaska M (2010) Sukzession ungenutzer Moorwiesen in Dolny Slask. Telma 40:105–118Google Scholar
  37. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San MateoGoogle Scholar
  38. Rosenthal G (2010) Secondary succession in a fallow central European wet grassland. Flora 205:153–160CrossRefGoogle Scholar
  39. Schulze-Hagen K (1991) Acrocephalus paludicola (Vieillot 1817): Seggenrohrsänger, Handbuch der Vögel Mitteleuropas. In: Glutz von Blotzheim UN (ed) Handbuch der Vögel Mitteleuropas, vol 14. AULA-Verlag, Wiesbaden, pp 252–291Google Scholar
  40. Söndgerath D, Schröder B (2002) Population dynamics and habitat connectivity affecting spatial spread of populations: a simulation study. Landsc Ecol 17:57–70CrossRefGoogle Scholar
  41. Steffenhagen P, Zerbe S, Frick A, Schulz K, Timmermann T (2010) Wiederherstellung von Ökosystemleistungen der Flusstalmoore in Mecklenburg-Vorpommern. Naturschutz und Landschaftsplanung 42:304–311Google Scholar
  42. Stohlgren TJ, Ma P, Kumar S, Rocca M, Morisette JT, Jarnevich CS, Benson N (2010) Ensemble habitat mapping of invasive plant species. Risk Anal 30:224–235. doi: 10.1111/j.1539-6924.2009.01343.x CrossRefGoogle Scholar
  43. Succow M, Joosten H (eds) (2001) Landschaftsökologische Moorkunde. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  44. Tanneberger F, Wichtmann W (2011) Carbon Credits from peatland rewetting. Climate–biodiversity–land use. Schweizerbart Science Publishers, StuttgartGoogle Scholar
  45. Tanneberger F, Bellebaum J, Helmecke A, Fartmann T, Just P, Jehle P, Sadlik J (2008) Rapid deterioration of aquatic warbler Acrocephalus paludicola habitats at the western margin of its breeding range. J Ornithol 149:105–115CrossRefGoogle Scholar
  46. Tanneberger F, Flade M, Preiksa Z, Schröder B (2010) Habitat selection of the globally threatened Aquatic Warbler at the western margin of the breeding range and implications for management. Ibis 152:347–358CrossRefGoogle Scholar
  47. Tanneberger F, Bellebaum J, Dylawerski M, Fartmann T, Jurzyk-Nordlöw S, Koska I, Tegetmeyer C, Wojciechowska M (2011) Habitats of the globally threatened Aquatic Warbler (Acrocephalus paludicola) in Pomerania: site conditions, flora, and vegetation characteristics. Plant Divers Evolut 129(3–4):253–273CrossRefGoogle Scholar
  48. Warren DL, Seifert SN (2010) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21(2):335–342CrossRefGoogle Scholar
  49. Wintle B, Elith J, Potts J (2005) Fauna habitat modeling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Aust Ecol 30:719–738CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Annett Frick
    • 1
    Email author
  • Franziska Tanneberger
    • 2
  • Jochen Bellebaum
    • 3
  1. 1.LUPPotsdamGermany
  2. 2.Institute of Botany and Landscape EcologyUniversity of GreifswaldGreifswaldGermany
  3. 3.NABU BrandenburgSchwedt/Oder OT CriewenGermany

Personalised recommendations