Skip to main content
Log in

Light Availability Prevails Over Soil Fertility and Structure in the Performance of Asian Knotweeds on Riverbanks: New Management Perspectives

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Asian knotweeds (Fallopia spp.) are considered one of the world’s most invasive species. Restoring habitats dominated by these exotic species requires a better understanding of the importance of abiotic factors controlling the invasive knotweeds performance. We used observational data obtained on the embankment of the Isère River (France) to study the performance of Fallopia spp. under different soil, light, and disturbance conditions. On the Isère riverbanks, light intensity assessed by light quantity transmitted through canopy was the most important factor explaining the variability observed on knotweed performance expressed as above-ground biomass per square meter. Asian knotweeds were more productive under intensive light conditions. Alternatively other factors such as mowing (twice a year), soil fertility, soil texture, position on the bank or exposure to the sun had no significant effect on knotweed biomass production. We conclude that decreasing light resources, for example, by increasing competitive pressure on sites dominated by Asian knotweeds could be included in management plans to control the populations of this invasive taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi N, Terashima I, Takahashi M (1996) Central die-back of monoclonal stands of Reynoutria japonica in an early stage of primary succession on Mount Fuji. Ann Bot 77(5):477–486

    Article  Google Scholar 

  • Aguilera AG, Alpert P, Dukes JS, Harrington R (2010) Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biol Invasions 12(5):1243–1252

    Article  Google Scholar 

  • Bailey JP, Bímová K, Mandák B (2007) The potential role of polyploidy and hybridisation in the further evolution of the highly invasive Fallopia taxa in Europe. Ecol Res 22(6):920–928

    Article  Google Scholar 

  • Bailey JP, Bímová K, Mandák B (2009) Asexual spread versus sexual reproduction and evolution in Japanese knotweed s.l. sets the stage for the “battle of the clones”. Biol Invasions 11(5):1189–1203

    Article  Google Scholar 

  • Barney JN, Whitlow TH, Lembo Jr. AJ (2008) Revealing historic invasion patterns and potential invasion sites for two non-native plant species. PLoS One 3(2):e1635

    Google Scholar 

  • Barták R, Konupková Kalousová Š, Krupová B (2010) Methods of elimination of invasive knotweed species (Reynoutria spp.). Moravian-Silesian Region in cooperation with ČSOP Salamandr and with financial support from the European Union, 2010

  • Beerling DJ (1991) The effect of Riparian land use on the occurrence and abundance of Japanese knotweed Reynoutria japonica on selected rivers in South Wales. Biol Conserv 55(3):329–337

    Article  Google Scholar 

  • Bímová K, Mandák B, Pyšek P (2003) Experimental study of vegetative regeneration in four invasive Reynoutria taxa (Polygonaceae). Plant Ecol 166(1):1–11

    Article  Google Scholar 

  • Bímová K, Mandák B, Kašparová I (2004) How does Reynoutria invasion fit the various theories of invasibility? J Veg Sci 15(4):495–504

    Google Scholar 

  • Blumenthal DM, Jordan NR, Russelle MP (2003) Soil carbon addition controls weeds and facilitates prairie restoration. Ecol Appl 13(3):605–615

    Article  Google Scholar 

  • Bradford MA, Schumacher HB, Catovsky S, Eggers T, Newingtion JE, Tordoff GM (2007) Impacts of invasive plant species on riparian plant assemblages: interactions with elevated atmospheric carbon dioxide and nitrogen deposition. Oecologia 152(4):791–803

    Article  Google Scholar 

  • Bravard JP (1989) La métamorphose des rivières des Alpes françaises à la fin du moen-age et à l’époque moderne. Bull de la Société Géographique de Liège 25:145–157

    Google Scholar 

  • Brown CS, Anderson VJ, Claassen VP, Stannard ME, Wilson LM, Atkinson SY, Bromberg JE, Grant Iii TA, Munis MD (2008) Restoration ecology and invasive plants in the semiarid west. Invasive Plant Sci Manag 1(4):399–413

    Article  Google Scholar 

  • Burns JH (2006) Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecol Appl 16(4):1367–1376

    Article  Google Scholar 

  • Burton ML, Samuelson LJ, Pan S (2005) Riparian woody plant diversity and forest structure along an urban–rural gradient. Urban Ecosyst 8(1):93–106

    Article  Google Scholar 

  • Cavaillé P, Dommanget F, Daumergue N, Loucougaray G, Spiegelberger T, Tabacchi E, Evette A (2013) Biodiversity assessment following a naturality gradient of riverbank protection structures in French prealps rivers. Ecol Eng 53:23–30

    Article  Google Scholar 

  • Chiba N, Hirose T (1993) Nitrogen acquisition and use in three perennials in the early stage of primary succession. Funct Ecol 7(3):287–292

    Article  Google Scholar 

  • Choler P (2002) Niche differentiation and distribution of Carex curvula along a bioclimatic gradient in the southwestern Alps. J Veg Sci 13:851–858

    Google Scholar 

  • Crowhurst G (2006) Managing Japanese knotweed on development sites. Environ Law Manag 18(6):296–302

    Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • Dale MP, Causton DR (1992) The ecophysiology of Veronica chamaedrys, V. montana and V. officinalis. III. Effects of shading on the phenology of biomass allocations—a field experiment. J Ecol 80(3):505–515

    Article  Google Scholar 

  • Dassonville N, Vanderhoeven S, Gruber W, Meerts P (2007) Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Ecoscience 14(2):230–240

    Article  Google Scholar 

  • DeFerrari CMN, Robert J (1994) A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. J Veg Sci 5:247–258

    Article  Google Scholar 

  • Drever CR (2005) Assessing light and conifer growth in a riparian restoration treatment along Spirit Creek, British Columbia. Northwest Sci 79(1):44–52

    Google Scholar 

  • Eschtruth AK, Battles JJ (2011) The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility. Ecology 92(6):1314–1322

    Article  Google Scholar 

  • Evans JP, Cain ML (1995) A spatially explicit test of foraging behavior in a clonal plant. Ecology 76(4):1147–1155

    Article  Google Scholar 

  • Evette A, Labonne S, Rey F, Liébault F, Jancke O, Girel J (2009) History of bioengineering techniques for erosion control in rivers in western Europe. Environ Manag 43(6):972–984

    Article  Google Scholar 

  • Evette A, Balique C, Lavaine C, Rey F, Prunier P (2012) Using ecological and biogeographical features to produce a typology of the plant species used in bioengineering for riverbank protection in Europe. River Res Appl 28(10):1830–1842

    Article  Google Scholar 

  • Frazer GW, Canham CD (1999) Gap light analyzer. Imaging software to extract forest canopy structure and gap light transmission indices from true-colour hemispherical (fisheye) photographs. Simon Fraser University, Institute of Ecosystem Studies, Burnaby

  • Fujiyoshi M, Kagawa A, Nakatsubo T, Masuzawa T (2005) Successional changes in mycorrhizal type in the pioneer plant communities of a subalpine volcanic desert on Mt. Fuji, Japan. Polar Biosci 18:60–72

    Google Scholar 

  • Funk JL, McDaniel S (2010) Altering light availability to restore invaded forest: the predictive role of plant traits. Restor Ecol 18(6):865–872

    Article  Google Scholar 

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23(12):695–703

    Article  Google Scholar 

  • Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141(3):646–654

    Article  Google Scholar 

  • Gerber E, Murrell C, Krebs C, Bilat J, Schaffner U (2010) Evaluating non-chemical management methods against invasive exotic knotweeds, Fallopia spp. CABI, Egham

    Google Scholar 

  • Girel J (1994) Old distribution procedure of both water and matter fluxes in floodplains of western Europe: impact on present vegetation. Environ Manag 8(2):203–221

    Article  Google Scholar 

  • Gu B (2006) Environmental conditions and phosphorus removal in Florida lakes and wetlands inhabited by Hydrilla verticillata (Royle): implications for invasive species management. Biol Invasions 8(7):1569–1578

    Article  Google Scholar 

  • Herpigny B, Dassonville N, Ghysels P, Mahy G, Meerts P (2012) Variation of growth and functional traits of invasive knotweeds (Fallopia spp.) in Belgium. Plant Ecol 213(3):419–430

    Article  Google Scholar 

  • Hughes F, Richards K, Girel J, Moss T, Muller E, Nilsson C, Rood S (2003) The flooded forest: guidance for policy makers and river managers in Europe on the restoration of floodplain forests. European Commission

  • ISSG (2008) Invasive species specialist group gateway—UICN. http://www.issg.org/index.html. Accessed 5 Mar 2010

  • Jolliffe IT (2002) Principal component analysis. Springer series in statistics, 2nd revised edition edn, Springer, New York

  • Kobayashi T, Okamoto K, Kanazawa Y, Hori Y (2005) Differences in plant-size structure and biomass allocation in plants between exposed and shaded Plantago asiatica populations at a mid-elevated habitat in the cool-temperate region of Japan. Plant Species Biol 20(1):47–56

    Article  Google Scholar 

  • Le Berre M (2010) Suivi d’une étude expérimentale de lutte contre les renouées exotiques invasives (Fallopia spp.) sur les digues de l’Isère. Université Joseph Fourier, ADIDR, Grenoble

  • Lecerf A, Patfield D, Boiché A, Riipinen MP, Chauvet E, Dobson M (2007) Stream ecosystems respond to riparian invasion by Japanese knotweed (Fallopia japonica). Can J Fish Aquat Sci 64(9):1273–1283

    Article  CAS  Google Scholar 

  • Lee CS, Cho YC, Shin HC, Kim GS, Pi JH (2010) Control of an invasive alien species, Ambrosia trifida with restoration by introducing willows as a typical riparian vegetation. J Ecol Field Biol 33(2):157–164

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling 20. Elsevier, Amsterdam

    Google Scholar 

  • Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5(2):131–144

    Article  Google Scholar 

  • Maerz JC, Blossey B, Nuzzo V (2005) Green frogs show reduced foraging success in habitats invaded by Japanese knotweed. Biodivers Conserv 14(12):2901–2911

    Article  Google Scholar 

  • Mandle L, Warren DL, Hoffmann MH, Peterson AT, Schmitt J, von Wettberg EJ (2010) Conclusions about niche expansion in introduced impatiens walleriana populations depend on method of analysis. PLoS One 5(12):e15297

    Google Scholar 

  • Maule HG, Andrews M, Morton JD, Jones AV, Daly GT (1995) Sun/shade acclimation and nitrogen nutrition of Tradescantian fluminensis, a problem weed in New Zealand native forest remnants. N Z J Ecol 19(1):35–46

    Google Scholar 

  • Maurel N, Fujiyoshi M, Muratet A, Porcher E, Motard E, Gargominy O, Machon N (2013) Biogeographic comparisons of herbivore attack, growth and impact of Japanese knotweed between Japan and France. J Ecol 101(1):118–127

    Article  Google Scholar 

  • McClain CD, Holl KD, Wood DM (2011) Successional models as guides for restoration of riparian forest understory. Restor Ecol 19(2):280–289

    Article  Google Scholar 

  • Meekins JF, McCarthy BC (2001) Effect of environmental variation on the invasive success of a nonindigenous forest herb. Ecol Appl 11(5):1336–1348

    Article  Google Scholar 

  • Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3(2):209–212

    Article  Google Scholar 

  • Parkinson H, Mangold J (2010) Biology, ecology and management of the knotweed complex. Montana State University, Bozeman

    Google Scholar 

  • Perry LG, Galatowitsch SM (2006) Light competition for invasive species control: a model of cover crop–weed competition and implications for Phalaris arundinacea control in sedge meadow wetlands. Euphytica 148(1–2):121–134

    Article  Google Scholar 

  • Perry LG, Galatowitsch SM, Rosen CJ (2004) Competitive control of invasive vegetation: a native wetland sedge suppresses Phalaris arundinacea in carbon-enriched soil. J Appl Ecol 41(1):151–162

    Article  CAS  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335(6074):1344–1348

    Article  CAS  Google Scholar 

  • Planty-Tabacchi AM, Tabacchi E, Naiman RJ, Deferrari C, Décamps H (1996) Invasibility of species-rich communities in riparian zones. Conserv Biol 10(2):598–607

    Article  Google Scholar 

  • Price EAC, Gamble R, Williams GG, Marshall C (2001) Seasonal patterns of partitioning and remobilization of C-14 in the invasive rhizomatous perennial Japanese knotweed (Fallopia japonica (Houtt.) Ronse Decraene). Evol Ecol 15(4–6):347–362

    Article  Google Scholar 

  • Pyšek P, Prach K (1993) Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. J Biogeogr 20(4):413–420

    Article  Google Scholar 

  • Pyšek P, Prach K (1994) How important are rivers for supporting plant invasions? Ecology and management of invasive riverside plants. Wiley, Chichester

  • Quinn LD, Holt JS (2009) Restoration for resistance to invasion by giant reed (Arundo donax). Invasive Plant Sci Manag 2(4):279–291

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reever Morghan KJ, Rice KJ (2006) Variation in resource availability changes the impact of invasive thistles on native bunchgrasses. Ecol Appl 16(2):528–539

    Article  Google Scholar 

  • Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pyšek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13(1):126–139

    Article  Google Scholar 

  • Rouifed S, Bornette G, Mistler L, Piola F (2011) Contrasting response to clipping in the Asian knotweeds Fallopia japonica and Fallopia × bohemica. Ecoscience 18(2):110–114

    Article  Google Scholar 

  • Saad L, Tiébré MS, Hardy OJ, Mahy G, Vanderhoeven S (2011) Patterns of hybridization and hybrid survival in the invasive alien Fallopia complex (Polygonaceae). Plant Ecol Evol 144(1):12–18

    Article  Google Scholar 

  • Schnitzler A, Schlesier S (1997) Ecologie, biogéographie et possibilités de contrôle des populations invasives de Renouées asiatiques (Fallopia japonica et fallopia sachalinensis) en Europe. Le cas particulier du bassin Rhin Meuse. AERM;Centre de Recherches Ecologiques METZ; Université METZ; Laboratoire de phytoécologie METZ

  • Selzer LJ, Lencinas MV, Martínez-Pastur GJ, Busso CA (2013) Light and soil moisture effects on biomass and its allocation in Osmorhiza depauperata Philippi (Apiaceae). Ecol Res 28(3):469–480

    Article  Google Scholar 

  • Siemens TJ, Blossey B (2007) An evaluation of mechanisms preventing growth and survival of two native species in invasive Bohemian knotweed (Fallopia xbohemica, Polygonaceae). Am J Bot 94(5):776–783

    Article  Google Scholar 

  • Slade AJ, Hutchings MJ (1987) The effects of light intensity on foraging in the clonal herb Glechoma hederacea. J Ecol 75(3):639–650

    Article  Google Scholar 

  • Smith JMD, Ward JP, Child LE, Owen MR (2007) A simulation model of rhizome networks for Fallopia japonica (Japanese knotweed) in the United Kingdom. Ecol Model 200(3–4):421–432

    Article  Google Scholar 

  • SMVOA (2005–2009) Bilan du programme de lutte contre la Renouée du Japon. Syndicat mixte de la Vallée de l’Orge Aval, Viry-Chatillon

  • Stuefer JF, During HJ, De Kroon H (1994) High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. J Ecol 82(3):511–518

    Article  Google Scholar 

  • Thuiller W (2007) Biodiversity climate change and the ecologist. Nature 448:550–552

    Article  CAS  Google Scholar 

  • Tiébré MS, Saad L, Mahy G (2008) Landscape dynamics and habitat selection by the alien invasive Fallopia (Polygonaceae) in Belgium. Biodivers Conserv 17(10):2357–2370

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21(1):1–16

    Google Scholar 

  • Vrchotová N, Šerá B (2008) Allelopathic properties of knotweed rhizome extracts. Plant Soil Environ 54(7):301–303

    Google Scholar 

  • Werger MJA, Huber H (2006) Tuber size variation and organ preformation constrain growth responses of a spring geophyte. Oecologia 147(3):396–405

    Article  Google Scholar 

  • Weston LA, Barney JN, DiTommaso A (2005) A review of the biology and ecology of three invasive perennials in New York State: Japanese knotweed (Polygonum cuspidatum), mugwort (Artemisia vulgaris) and pale swallow-wort (Vincetoxicum rossicum). Plant Soil 277(1–2):53–69

    Article  CAS  Google Scholar 

  • Yue C, Chang J, Wang K, Zhu Y (2004) Response of clonal growth in Phyllostachys praecox f. prevernalis to changing light intensity. Aust J Bot 52(2):171–174

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Nathan Daumergue for his valuable assistance in the field work. We are also grateful to Alain Bédécarrat, Marie-Laure Navas and two anonymous reviewers for advice and useful comments that greatly improved this manuscript. We would also like to thank the Alpine Botanical Conservatory (CBNA) and the ADIDR for their data sets on Asian knotweeds presence on the Isère territory. Funding was provided by the National Research Institute of Science and Technology for Environment and Agriculture (Irstea) and by the Paris Institute of Technology for Life, Food, and Environmental Sciences (AgroParisTech-ENGREF).

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical standards

Authors declare that this experiment complies with the current laws of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Dommanget.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dommanget, F., Spiegelberger, T., Cavaillé, P. et al. Light Availability Prevails Over Soil Fertility and Structure in the Performance of Asian Knotweeds on Riverbanks: New Management Perspectives. Environmental Management 52, 1453–1462 (2013). https://doi.org/10.1007/s00267-013-0160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0160-3

Keywords

Navigation