Skip to main content

Advertisement

Log in

Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China’s Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts J, Eisinger E, Heuvelink GBM, Stewart TJ (2003) Using linear integer programming for multi-site land-use allocation. Geogr Anal 35(2):148–169. doi:10.1111/j.1538-4632.2003.tb01106.x

    Google Scholar 

  • Alshuwaikhat HM, Nassef K (1996) A GIS-based spatial decision support system for suitability assessment and land use allocation. Arab J Sci Eng 21(4A):525–543

    Google Scholar 

  • Arthur JL, Nalle DJ (1997) Clarification on the use of linear programming and GIS for land-use modelling. Int J Geogr Inf Sci 11(4):397–402. doi:10.1080/136588197242338

    Article  Google Scholar 

  • Bucur D, Jitareanu G, Ailincai C, Tsadilas C, Ailincai D, Mercus A (2007) Influence of soil erosion on water, soil, humus and nutrient losses in different crop systems in the Moldavian Plateau, Romania. J Food Agric Environ 5(2):261–264

    CAS  Google Scholar 

  • Burn DH, McBean EA (1985) Optimization modeling of water-quality in an uncertain environment. Water Resour Res 21(7):934–940. doi:10.1029/WR021i007p00934

    Article  CAS  Google Scholar 

  • Cao MF, Huang GH (2011) Scenario-based methods for interval linear programming problems. J Environ Inform 17(2):65–74

    Article  Google Scholar 

  • Chang NB, Wen CG, Wu SL (1995) Optimal management of environmental and land resources in a watershed by multiobjective programming. J Environ Manage 44(2):145–161

    Article  Google Scholar 

  • Chen LG, Qian X, Shi Y, Li M (2012) Identification of vulnerable areas of soil loss in the Xiangxi watershed based on RUSLE and SDR. China Sci Paper 7(5):395–402 (in Chinese)

    Google Scholar 

  • Chuvieco E (1993) Integration of linear-programming and GIS for land-use modeling. Int J Geogr Inf Syst 7(1):71–83. doi:10.1080/02693799308901940

    Article  Google Scholar 

  • de Vente J, Poesen J (2005) Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci Rev 71(1–2):95–125. doi:10.1016/j.earscirev.2005.02.002

    Article  Google Scholar 

  • Fan YR, Huang GH (2012) A robust two-step method for solving interval linear programming problems within an environmental management context. J Environ Inform 19(1):1–9

    Article  Google Scholar 

  • Gao Q, Ci L, Yu M (2002) Modeling wind and water erosion in northern China under climate and land use changes. J Soil Water Conserv 57(1):46–55

    Google Scholar 

  • Han JC, Huang GH, Zhang H, Zhuge YS, He L (2012) Fuzzy constrained optimization of eco-friendly reservoir operation using self-adaptive genetic algorithm: a case study of a cascade reservoir system in the Yalong River, China. Ecohydrology 5(6):768–778. doi:10.1002/eco.267

    Article  Google Scholar 

  • Huang GH (1996) IPWM: an interval parameter water quality management model. Eng Optim 26(2):79–103. doi:10.1080/03052159608941111

    Article  Google Scholar 

  • Huang GH, Cao MF (2011) Analysis of solution methods for interval linear programming. J Environ Inform 17(2):54–64

    Article  Google Scholar 

  • Huang GH, Moore RD (1993) Gray linear-programming, its solving approach, and its application. Int J Syst Sci 24(1):159–172. doi:10.1080/00207729308949477

    Article  Google Scholar 

  • Huang GH, Baetz BW, Patry GG (1993) A gray fuzzy linear-programming approach for municipal solid-waste management planning under uncertainty. Civil Eng Syst 10(2):123–146. doi:10.1080/02630259308970119

    Article  Google Scholar 

  • Huang GH, Cohen SJ, Yin YY, Bass B (1998) Land resources adaptation planning under changing climate—a study for the Mackenzie Basin. Resour Conserv Recycl 24(2):95–119. doi:10.1016/s0921-3449(98)00044-5

    Article  Google Scholar 

  • Huang GH, Liu L, Chakma A, Wu SM, Wang XH, Yin YY (1999) A hybrid GIS-supported watershed modelling system: application to the Lake Erhai basin, China. Hydrol Sci J 44(4):597–610. doi:10.1080/02626669909492255

    Article  Google Scholar 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17(4):319–464. doi:10.1016/s0735-2689(98)00363-3

    Article  Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539. doi:10.1002/ldr.472

    Article  Google Scholar 

  • Li YP, Huang GH, Nie SL, Nie XH, Maqsood I (2006) An interval-parameter two-stage stochastic integer programming model for environmental systems planning under uncertainty. Eng Optim 38(4):461–483. doi:10.1080/03052150600557742

    Article  Google Scholar 

  • Li YP, Huang GH, Sun W (2011) Management of uncertain information for environmental systems using a multistage fuzzy-stochastic programming model with soft constraints. J Environ Inform 18(1):28–37. doi:10.3808/jei.201100196

    Article  CAS  Google Scholar 

  • Liu Z (2004) Soil and water conservation in China. In: Proceedings of the ninth international symposium on river sedimentation. Tsinghua University Press, Yichang, pp 136–142

  • Liu Y, Lv X, Qin X, Guo H, Yu Y, Wang J, Mao G (2007a) An integrated GIS-based analysis system for land-use management of lake areas in urban fringe. Landsc Urban Planning 82(4):233–246. doi:10.1016/j.landurbplan.2007.02.012

    Article  Google Scholar 

  • Liu Y, Qin X, Guo H, Zhou F, Wang J, Lv X, Mao G (2007b) ICCLP: an inexact chance-constrained linear programming model for land-use management of lake areas in urban fringes. Environ Manage 40(6):966–980. doi:10.1007/s00267-007-9013-2

    Article  Google Scholar 

  • Liu AX, Wang J, Liu ZJ (2008) Assessing the effects of land use changes on soil erosion in Three Gorges Reservoir Region of China. In: 2008 International Workshop on Earth Observation and Remote Sensing Applications, IEEE, New York

  • Liu Y, Yu Y, Guo H, Yang P (2009) Optimal land-use management for surface source water protection under uncertainty: a case study of Songhuaba watershed (Southwestern China). Water Resour Manage 23(10):2069–2083. doi:10.1007/s11269-008-9370-5

    Article  Google Scholar 

  • Luo B, You J (2007) A watershed-simulation and hybrid optimization modeling approach for water-quality trading in soil erosion control. Adv Water Resour 30(9):1902–1913. doi:10.1016/j.advwatres.2007.03.001

    Article  Google Scholar 

  • Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Prog Planning 62(1):3–65. doi:10.1016/j.progress.2003.09.002

    Article  Google Scholar 

  • Maqsood M, Huang GH, Yeomans JS (2005) An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. Eur J Oper Res 167(1):208–225. doi:10.1016/j.ejor.2003.08.068

    Article  Google Scholar 

  • Mendoza GA (1987) A mathematical-model for generating land-use allocation alternatives for agroforestry systems. Agrofor Syst 5(4):443–453. doi:10.1007/bf00047178

    Article  Google Scholar 

  • Meng QH, Fu BJ, Yang LZ (2001) Effects of land use on soil erosion and nutrient loss in the Three Gorges Reservoir Area, China. Soil Use Manage 17(4):288–291. doi:10.1111/j.1475-2743.2001.tb00040.x

    Article  Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8(1):119–137. doi:10.1007/s10668-005-1262-8

    Article  Google Scholar 

  • Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. Catena 50(2–4):91–133. doi:10.1016/s0341-8162(02)00143-1

    Article  Google Scholar 

  • Sadeghi SHR, Jalili K, Nikkami D (2009) Land use optimization in watershed scale. Land Use Policy 26(2):186–193. doi:10.1016/j.landusepol.2008.02.007

    Article  Google Scholar 

  • Sharawi HA (2006) Optimal land-use allocation in central Sudan. For Policy Econ 8(1):10–21. doi:10.1016/j.forpol.2004.04.006

    Article  Google Scholar 

  • Shi H, Shao MG (2000) Soil and water loss from the Loess Plateau in China. J Arid Environ 45(1):9–20. doi:10.1006/jare.1999.0618

    Article  Google Scholar 

  • Smout IK, Gorantiwar SD (2005) Multilevel approach for optimizing land and water resources and irrigation deliveries for tertiary units in large irrigation schemes. I: Method. J Irrigation Drainage Eng-ASCE 131(3):254–263. doi:10.1061/(asce)0733-9437(2005)131:3(254)

  • Sun C (2008) Study on the relationship between land use and soil and water loss in Xiangxi Watershed. Dissertation, Beijing Forestry University (in Chinese)

  • Trimble SW, Crosson P (2000) Land use—US soil erosion rates—myth and reality. Science 289(5477):248–250. doi:10.1126/science.289.5477.248

    Article  CAS  Google Scholar 

  • Verburg PH, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, Mastura SSA (2002) Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manage 30(3):391–405. doi:10.1007/s00267-002-2630-x

    Article  Google Scholar 

  • Wang XH, Yu S, Huang GH (2004) Land allocation based on integrated GIS-optimization modeling at a watershed level. Landsc Urban Planning 66(2):61–74. doi:10.1016/s0169-2046(03)00095-1

    Article  Google Scholar 

  • Wang E, Xin C, Williams JR, Xu C (2006) Predicting soil erosion for alternative land uses. J Environ Qual 35(2):459–467. doi:10.2134/jeq2005.0063

    Article  Google Scholar 

  • Wets R (1966) Programming under uncertainty: the solution set. SIAM J Appl Math 14(5):1143–1151

    Article  Google Scholar 

  • Yichang Municipal People’s Government (2009) General land use plan of Yichang City (2006–2020). Yichang (in Chinese)

  • Yichang Municipal People’s Government (2011) Comprehensive development plan of Yichang City (2011–2030). Yichang (in Chinese)

  • Yin Z, Zuo C, Gou J, Jia J (2011) Soil loss of different land use types in central hill region of the Sichuan Basin. Shuili Xuebao/J Hydraul Eng 42(3):329–336 (in Chinese)

    Google Scholar 

  • Zhang H, Huang GH (2011) Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecol Model 222(2):313–321. doi:10.1016/j.ecolmodel.2009.12.011

    Article  CAS  Google Scholar 

  • Zhang H, Huang GH, Wang D, Zhang X, Li G, An C, Cui Z, Liao R, Nie X (2012) An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds. Water Res 46(4):1207–1224

    Article  CAS  Google Scholar 

  • Zhou Z, Ning D, Yang Z (1999) Land resource optimized distribution of Zigui County in Three Gorges Reservoir Area. J Beijing Normal Univ (Nat Sci) 35(4):536–541 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Major Project Program of the Natural Sciences Foundation (51190095) and the Program for Innovative Research Team in University (IRT1127). The authors are indebted to the reviewers and editors for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-He Huang.

Appendix

Appendix

Appendix 1

The IFTSP form of land use management model in this study was formulated as follows:

$${\text{Maximize}}\,\varPsi^{ \pm } = \sum\limits_{i = 1}^{I} {\sum\limits_{j = 1}^{J} {\sum\limits_{k = 1}^{K} {X_{i,j,k}^{ \pm } } \cdot {\text{GEB}}_{j,k}^{ \pm } } \cdot {\text{NY}}_{k} } - \sum\limits_{i = 1}^{I} {\sum\limits_{j = 1}^{J} {\sum\limits_{j' = 1}^{J} {\sum\limits_{k = 1}^{K} {{\text{XX}}_{{_{j',i,j,k} }}^{ \pm } } } \cdot {\text{CLD}}_{j',j,k}^{ \pm } } \cdot {\text{NY}}_{k} } + \sum\limits_{i = 1}^{I} {\sum\limits_{k = 1}^{K} {(X_{{_{i,3,k} }}^{ \pm } + X_{{_{i,5,k} }}^{ \pm } - X_{{_{i,5,k - 1} }}^{ \pm } - X_{{_{i,5,k - 1} }}^{ \pm } )} \cdot {\text{SUB}}_{2,k}^{ \pm } } \cdot {\text{NY}}_{k} + \sum\limits_{i = 1}^{I} {\sum\limits_{k = 1}^{K} {(X_{{_{i,1,k} }}^{ \pm } + X_{{_{i,2,k} }}^{ \pm } )} \cdot {\text{SUB}}_{1,k}^{ \pm } } \cdot {\text{NY}}_{k} - C_{k}^{ \pm } \cdot \sum\limits_{i = 1}^{I} {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{n} {\omega_{i,k,l} \cdot p_{i,k,l} } } } \cdot \mu \cdot {\text{TLA}}_{i}$$
(9a)

Subject to:

$$\sum\limits_{i = 1}^{I} {\sum\limits_{j = 1}^{J} {g_{i,k} (X_{i,j,k}^{ \pm } ) \cdot {\text{TLA}}_{i} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{ \le } {\text{SEC}}_{k}^{ \pm } } } \cdot \sum\limits_{i = 1}^{I} {{\text{TLA}}_{i}^{{}} } ,\quad \forall k$$
(9b)
$$\sum\limits_{j = 1}^{J} {g_{i,k} (X_{i,j,k}^{ \pm } )} , - \omega_{i,k,l}^{ \pm } \le \delta_{i,k,l}^{ \pm } ,\quad \forall i,k,l$$
(9c)
$$\sum\limits_{j = 1}^{J} {X_{i,j,k}^{ \pm } } \le {\text{TLA}}_{i} ,\quad \forall i,k$$
(9d)
$$\sum\limits_{j' = 1}^{J} {{\text{XX}}_{j',i,j,k}^{ \pm } = X_{i,j,k}^{ \pm } } ,\quad \forall i,j,k$$
(9e)
$$\sum\limits_{j = 1}^{J} {{\text{XX}}_{{j^{\prime } ,i,j,k}}^{ \pm } \le X_{{i,j^{\prime } ,k - 1}}^{ \pm } } ,\quad \forall i,j^{\prime } ,k$$
(9f)
$$\sum\limits_{i = 1}^{I} {(X_{i,1,k}^{ \pm } + X_{i,2,k}^{ \pm } )} \ge {\text{MFA}}_{k}^{ \pm } ,\quad \forall k$$
(9g)
$$\sum\limits_{i = 1}^{I} {X_{i,5,k}^{ \pm } } \ge \sum\limits_{i = 1}^{I} {X_{i,5,k - 1}^{ \pm } } + {\text{new}}T_{k}^{ \pm } ,\quad \forall k$$
(9h)
$$\sum\limits_{i = 1}^{I} {X_{i,3,k}^{ \pm } } \ge \sum\limits_{i = 1}^{I} {{\text{TLA}}_{i} \cdot {\text{MFC}}_{k}^{ \pm } } ,\quad \forall k$$
(9i)
$$X_{i,4,k}^{ \pm } \ge {\text{TLA}}_{i} \cdot {\text{MGA}}_{i,k}^{ \pm } ,\quad \forall i,k$$
(9j)
$$X_{i,8,k}^{ \pm } \ge {\text{TLA}}_{i} \cdot {\text{MOL}}_{i,k}^{ \pm } ,\quad \forall i,k$$
(9k)
$$\sum\limits_{i = 1}^{I} {X_{i,7,k - 1} } \le \sum\limits_{i = 1}^{I} {X_{i,7,k}^{ \pm } } \le \sum\limits_{i = 1}^{I} {X_{i,7,(k - 1)}^{ \pm } } + {\text{MUE}}_{k}^{ \pm } ,\quad \forall k$$
(9l)
$$\sum\limits_{i = 1}^{I} {X_{3,7,k}^{ \pm } } \ge \sum\limits_{i = 1}^{I} {X_{3,7,k - 1}^{ \pm } } + {\text{U}}3{\text{D}}_{k}^{ \pm } ,\quad \forall k$$
(9m)
$$X_{i,3,k}^{ \pm } \le {\text{SFC}}_{i}^{ \pm } ,\quad \forall i,k$$
(9n)
$$X_{i,1,k}^{ \pm } \le {\text{SPF}}_{i}^{ \pm } ,\quad \forall i,k$$
(9o)
$$X_{i,2,k}^{ \pm } \le {\text{SDL}}_{i}^{ \pm } ,\quad \forall i,k$$
(9p)
$$\omega_{i,k,l}^{ \pm } \ge 0,\quad \forall i,k,l$$
(9q)
$${\text{XX}}_{{j^{\prime } ,i,j,k}}^{ \pm } \ge 0,\quad \forall j^{\prime } ,i,j,k$$
(9r)
$$X_{i,j,k}^{ \pm } \ge 0,\quad \forall i,j,k,$$
(9s)

where symbol “±” denotes an interval set with “+” and “−” as the upper and lower bounds of an interval-parameter, respectively; sign “\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{ \le }\)” suggests a fuzzy relationship between the left- and right-hand sides; \({\text{XX}}_{{j^{\prime } ,i,j,k}}^{ \pm }\) is decision variables; \(X_{i,j,k}^{ \pm }\) represents the decision state of land use allocation.

Appendix 2

The transformed form for solving the IFTSP model was given as follows:

$${\text{Maximize}}\;\lambda^{ \pm }$$
(10a)

Subject to:

$$\begin{aligned} & \sum\limits_{i = 1}^{I} {\sum\limits_{j = 1}^{J} {\sum\limits_{k = 1}^{K} {X_{i,j,k}^{ \pm } } \cdot {\text{GEB}}_{j,k}^{ \pm } } \cdot {\text{NY}}_{k} } - \sum\limits_{i = 1}^{I} {\sum\limits_{j = 1}^{J} {\sum\limits_{j' = 1}^{J} {\sum\limits_{k = 1}^{K} {{\text{XX}}_{{_{j',i,j,k} }}^{ \pm } } } \cdot {\text{CLD}}_{j',j,k}^{ \pm } } \cdot {\text{NY}}_{k} } \\ & \quad + \sum\limits_{i = 1}^{I} {\sum\limits_{k = 1}^{K} {(X_{{_{i,3,k} }}^{ \pm } + X_{{_{i,5,k} }}^{ \pm } - X_{{_{i,5,k - 1} }}^{ \pm } - X_{{_{i,5,k - 1} }}^{ \pm } )} \cdot {\text{SUB}}_{2,k}^{ \pm } } \cdot {\text{NY}}_{k} \\ & \quad + \sum\limits_{i = 1}^{I} {\sum\limits_{k = 1}^{K} {(X_{{_{i,1,k} }}^{ \pm } + X_{{_{i,2,k} }}^{ \pm } )} \cdot {\text{SUB}}_{1,k}^{ \pm } } \cdot {\text{NY}}_{k} \\ & \quad - C_{k}^{ \pm } \cdot \sum\limits_{i = 1}^{I} {\sum\limits_{k = 1}^{K} {\sum\limits_{l = 1}^{n} {\omega_{i,k,l} \cdot p_{i,k,l} } } } \cdot \mu \cdot {\text{TLA}}_{i} \ge \psi^{ + } \cdot \lambda^{ \pm } + \psi^{ - } \cdot \left( {1 - \lambda^{ \pm } } \right) \\ \end{aligned}$$
(10b)
$$\frac{{\sum\limits_{i = 1}^{I} {\sum\limits_{j = 1}^{J} {g_{i,k} (X_{i,j,k}^{ \pm } )} } \cdot {\text{TLA}}_{i} }}{{\sum\limits_{i = 1}^{I} {{\text{TLA}}_{i} } }} \le \lambda^{ \pm } \cdot {\text{SEC}}_{k}^{ + } + (1 - \lambda^{ \pm } ) \cdot {\text{SEC}}_{k}^{ - } ,\quad \forall k$$
(10c)
$$\sum\limits_{j = 1}^{J} {g_{i,k} (X_{i,j,k}^{ \pm } )} - \omega_{i,k,l}^{ \pm } \le \delta_{i,k,l}^{ \pm } ,\quad \forall i,k,l$$
(10d)
$$\sum\limits_{j = 1}^{J} {X_{i,j,k}^{ \pm } } \le {\text{TLA}}_{i} ,_{i} \forall i,k$$
(10e)
$$\sum\limits_{{j^{\prime } = 1}}^{J} {{\text{XX}}_{{j^{\prime } ,i,j,k}}^{ \pm } = X_{i,j,k}^{ \pm } } ,\quad \forall i,j,k$$
(10f)
$$\sum\limits_{j = 1}^{J} {{\text{XX}}_{{j^{\prime } ,i,j,k}}^{ \pm } \le X_{{i,j^{\prime } ,k - 1}}^{ \pm } } ,\quad \forall i,j^{\prime } ,k$$
(10g)
$$\sum\limits_{i = 1}^{I} {(X_{i,1,k}^{ \pm } + X_{i,2,k}^{ \pm } )} \ge {\text{MFA}}_{k}^{ \pm } ,\quad \forall k$$
(10h)
$$\sum\limits_{i = 1}^{I} {X_{i,5,k}^{ \pm } } \ge \sum\limits_{i = 1}^{I} {X_{i,5,k - 1}^{ \pm } } + {\text{new}}\;T_{k}^{ \pm } ,\quad \forall k$$
(10i)
$$\sum\limits_{i = 1}^{I} {X_{i,3,k}^{ \pm } } \ge \sum\limits_{i = 1}^{I} {{\text{TLA}}_{i} } \cdot {\text{MFC}}_{k}^{ \pm } ,\quad \forall k$$
(10j)
$$X_{i,4,k}^{ \pm } \ge {\text{TLA}}_{i} \cdot {\text{MGA}}_{i,k}^{ \pm } ,\quad \forall i,k$$
(10k)
$$X_{i,8,k}^{ \pm } \ge {\text{TLA}}_{i} \cdot {\text{MOL}}_{i,k}^{ \pm } ,\quad \forall i,k$$
(10l)
$$\sum\limits_{i = 1}^{I} {X_{i,7,k - 1} } \le \sum\limits_{i = 1}^{I} {X_{i,7,k}^{ \pm } } \le \sum\limits_{i = 1}^{I} {X_{i,7,(k - 1)}^{ \pm } } + {\text{MUE}}_{k}^{ \pm } ,\quad \forall k$$
(10m)
$$\sum\limits_{i = 1}^{I} {X_{3,7,k}^{ \pm } } \ge \sum\limits_{i = 1}^{I} {X_{3,7,k - 1}^{ \pm } } + {\text{U}}3{\text{D}}_{k}^{ \pm } ,\quad \forall k$$
(10n)
$$X_{i,3,k}^{ \pm } \le {\text{SFC}}_{i}^{ \pm } ,\quad \forall i,k$$
(10o)
$$X_{i,1,k}^{ \pm } \le {\text{SPF}}_{i}^{ \pm } ,\quad \forall i,k$$
(10p)
$$X_{i,2,k}^{ \pm } \le {\text{SDL}}_{i}^{ \pm } ,\quad \forall i,k$$
(10q)
$$\omega_{i,k,l}^{ \pm } \ge 0,\quad \forall i,k,l$$
(10r)
$$XX_{{j^{\prime } ,i,j,k}}^{ \pm } \ge 0,\quad \forall j^{\prime } ,i,j,k$$
(10s)
$$X_{i,j,k}^{ \pm } \ge 0,\quad \forall i,j,k$$
(10t)
$$0 \le \lambda^{ \pm } \le 1$$
(10u)

where λ ± is the control decision variable corresponding to the degree (membership grade) to which \(X_{i,j,k}^{ \pm }\) solution fulfills the fuzzy objective or constraints; Ψ + and Ψ represent the most and least desirable system objective values, corresponding to upper and lower submodels of model (9), respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JC., Huang, GH., Zhang, H. et al. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach. Environmental Management 52, 621–638 (2013). https://doi.org/10.1007/s00267-013-0122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0122-9

Keywords

Navigation