Skip to main content

A Satellite Model of Forest Flammability


We describe a model of forest flammability, based on daily satellite observations, for national to regional applications. The model defines forest flammability as the percent moisture content of fuel, in the form of litter of varying sizes on the forest floor. The model uses formulas from the US Forest Service that describe moisture exchange between fuel and the surrounding air and precipitation. The model is driven by estimates of temperature, humidity, and precipitation from the moderate resolution imaging spectrometer and tropical rainfall measuring mission multi-satellite precipitation analysis. We provide model results for the southern Amazon and northern Chaco regions. We evaluate the model in a tropical forest-to-woodland gradient in lowland Bolivia. Results from the model are significantly correlated with those from the same model driven by field climate measurements. This model can be run in a near real-time mode, can be applied to other regions, and can be a cost-effective input to national fire management programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Albini FA (1979) Spot distance from burning trees—a predictive model. USDA Forest Service general technical report INT-56. Intermountain forest and range experiment station, Forest Service, US Department of Agriculture, Ogden, Utah, USA

  2. Albini FA (1985) A model for fire spread in wildland fuels by radiation. Combust Sci Technol 42:229–258

    Article  Google Scholar 

  3. Anderson H (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service general technical report INT-122. Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, Ogden, Utah, USA

  4. Bradshaw LS, Deeming JE, Burgan RE, Cohen JD (1984) The 1978 national fire-danger rating system: technical documentation. General technical report INT-169. US Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, Ogden, Utah, USA

  5. Brown JK (2000) Wildland fire in ecosystems: effects of fire on flora. USDA Forest Service general technical report Gen. Tech. Rep. RMRS-GTR-42-vol 2. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, US Department of Agriculture Ogden, UT, USA

  6. Burgan RE, Andrews PL, Bradshaw LS, Chase CH, Hartford RA, Latham DJ (1997) WFAS: wildland fire assessment system. Fire Manag Notes 57(2):14–17

    Google Scholar 

  7. Burgan RE, Klaver RW, Klaver JM (2000) Fuel models and fire potential from satellite and surface observations. Accessed online 8 Apr 2009

  8. Burgen RE (1979) Estimating live fuel moisture for the 1978 national fire danger rating system. USDA Forest Service research paper INT-226. Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, Ogden, Utah, USA

  9. Byram GM (1959) Combustion of forest fuels. In: Davis KP (ed) Forest fire control and use, 2nd edn. McGraw-Hill Book Company, New York, pp 113–126

    Google Scholar 

  10. Cardoso MF, Hurtt GC, Moore B III, Nobre CA, Prins EM (2003) Projecting future fire activity in Amazonia. Glob Change Biol 9:656–669

    Article  Google Scholar 

  11. Chen Y, Randerson JT, Morton DC, DeFries RS, Collatz GJ, Kasibhatla PS, Giglio L, Jin Y, Marlier ME (2011) Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334:787–791

    Article  CAS  Google Scholar 

  12. Chuvieco E, Cocero D, Riaño D, Martin P, Martínez-Vega J, de la Riva J, Pérez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92:322–331

    Article  Google Scholar 

  13. Cohen JD, Deeming J (1985) The national fire danger rating system: basic equations. US Forest Service technical report PSW-82. Pacific Southwest Forest Range Experimental Station, Berkeley, California, USA

  14. Dinku T, Ceccato P, Grover-Kopec E, Lemma M, Connor SJ, Ropelewski CF (2007) Validation of satellite rainfall products over East Africa’s complex topography. Int J Remote Sens 28:1503–1526

    Article  Google Scholar 

  15. Ebert EE (2005) Satellite versus model rainfall—Which one to use? Fifth international scientific conference on the global energy and water cycle, Orange County. Global Energy and Water Experiment. Accessed 9 Mar 2009

  16. Fosberg MA (1971) Moisture content calculations for the 100-h timelag fuel in fire danger rating. US Department of Agriculture Forest Service Research Note RM-199. US Department of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, USA

  17. Fosberg MA (1977) Forecasting the 10-h timelag fuel moisture. USDA Forest Service research paper RM-187. Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, USA

  18. Fosberg MA, Rothermel RC, Andrews PL (1981) Moisture content calculations for 1,000-h timelag fuels. For Sci 27:19–26

    Google Scholar 

  19. GADSC (2013) Autonomous government of the Department of Santa Cruz in partnership with FAN implements climate change program. Webpage of the Gobierno Autonimo Departmental de Santa Cruz (GADSC), Bolivia. Accessed 30 Jan 2013

  20. Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J, Johnston A (1999) Mapping net primary production and related biophysical variables with remote sensing: applications to the Boreas region. J Geophys Res 104:27,719–727,734

    Google Scholar 

  21. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trend across boreal North America associated with climate and fire-disturbance. Proc Natl Acad Sci 102:13521–13525

    Article  CAS  Google Scholar 

  22. Grégoire JM, Tansey K, Silva JMM (2003) The GBA2000 initiative: developing a global burned area database from SPOT-VEGETATION imagery. Int J Remote Sens 24:1369–1376

    Article  Google Scholar 

  23. Hansen M, DeFries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7:1–15

    Article  Google Scholar 

  24. Heinsch FA, Andrews PL (2010) BehavePlus fire modeling system, version 5.0: Design and features. General technical report RMRS-GTR-249. Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. (10,487 KB; p 111)

  25. Hirpa FA, Gebremichael M (2010) Evaluation of high-resolution Satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol 29:1044–1051

    Article  Google Scholar 

  26. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EF, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  27. Illera P, Fernández A, Delgado JA (1996) Temporal evolution of the NDVI as an indicator of forest fire danger. Int J Remote Sens 5(17):1093–1105

    Article  Google Scholar 

  28. INPE (2013) Fire Monitoring Program, Instituto Nacional de Pesquisas Espaciais, Brazil. Accessed 23 Jan 2013

  29. INPE-Instituto Nacional de Pesquisas Espaciais (2011) Portal do Monitoramento de Queimadas e Incêndios. Disponível em. Accessed 30 Nov 2011

  30. Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  31. Katsanos D, Lagouvardos K, Kotroni V, Huffman GJ (2004) Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the central and eastern Mediterranean. Geophys Res Lett 31:L06116. doi:10.1029/2003GL019142

    Article  Google Scholar 

  32. Keetch J, Byram GM (1968) A drought index for forest fire control. USDA Forest Service research paper SE-38. US Department of Agriculture-Forest Service, Ashville, NC, USA

  33. Killeen TJ, Chavez E, Peña-Claros M, Toledo M, Arroy L, Caballero J, Correa L, Guillén R, Quevedo R, Saldias M, Soria L, Uslar Y, Vargas I, Steininger M (2006) The Chiquitano dry forest, the transition between humid and dry forest in Eastern lowland Bolivia. In: Pennington T, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography and conservation. Taylor & Francis, London, p 213–234

  34. Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Adler RF, Hou A, Kakar R, Wentz F, Ashcroft P, Kozu T, Hong Y, Okamotok Iguchi T, Kuroiwa H, Im E, Haddad Z, Huffman G, Ferrier B, Olson WS, Zipser E, Smith EA, Wilheit TT, North G, Krishnamurti T, Nakamura K (2000) The status of the tropical rainfall measuring mission (TRMM) after 2 years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  35. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554

    Article  CAS  Google Scholar 

  36. Machado, LAT, Ceballos J (2000) Satellite based products for monitoring weather in South America: winds and trajectories. 5th international winds workshop, Saannenmoser

  37. Matson M, Holben B (1987) Satellite detection of tropical burning in Brazil. Int J Remote Sens 8:509–516

    Article  Google Scholar 

  38. Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Edward Arnold Publishers, New York

    Google Scholar 

  39. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR, Lotsche A, Friedl M, Morisette JT, Votava P, Nemani RR, Running SW (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231

    Article  Google Scholar 

  40. Nepstad D, Lefebvre P, da Silva UL, Tomasella J, Schlesinger P, Solorzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Change Biol 10:704–717

    Article  Google Scholar 

  41. NWCG (2013) National wildfire coordinating group (NWCG), Glossary of wildland fire terminology. Accessed 30 Jan 2013

  42. Onset (2012) Accessed 20 Feb 2012

  43. Palmer WC (1965) Meteorological drought. US Department of Commerce research paper no. 45. US government printing office, Washington, DC, USA

  44. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    Article  CAS  Google Scholar 

  45. Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835

    Article  Google Scholar 

  46. Rainwise (2012) Accessed 20 Feb 2012

  47. Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested amazon landscape. Ecol Appl 15:1664–1678

    Article  Google Scholar 

  48. Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate spatial resolution data- a bi-directional reflectance mode-based expectation approach. Remote Sens Environ 83:263–286

    Article  Google Scholar 

  49. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 56:547–560

    Article  Google Scholar 

  50. Schroeder MJ (1969) Ignition probability. Office report 2106-1. US Department of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, USA

  51. Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. General technical report RMRS-GTR-153. US Department of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, USA

  52. Seemann SW, Li J, Menzel WP, Gumley LE (2003) Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J Appl Meteorol 42:1072–1091

    Article  Google Scholar 

  53. Seemann SW, Borbas EE, Li J, Menzel WP, Gumley LE (2006) MODIS atmospheric profile retrieval algorithm theoretical basis document version 6. Accessed 1 Jun 2009

  54. Setzer AW, Sismanoglu RA (2009) Fire risk: summary of calculations. INPE. Accessed 9 Apr 2009

  55. USFS (2013) US Forest Service Wildland Fire Assessment System. Accessed 23 Jan 2013

  56. USGS (2004) Shuttle radar topography mission, 3 arc second scene SRTM_u03_n008e004, Unfilled Unfinished 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland, February 2000

  57. Wan Z (2009) MODIS land surface temperature products users’ guide. Accessed 6 Apr 2009

  58. Wan Z, Li Z-L (1997) A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans Geosci Remote Sens 35:980–996

    Article  Google Scholar 

  59. Wan Z, Zhang Y, Zhang Q, Li Z-L (2004) Quality assessment and validation of the MODIS global land surface temperature. Int J Remote Sens 25:261–274

    Article  Google Scholar 

  60. Wang J, Wolff DB (2010) Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements. J Appl Meteorol Climatol 49:310–324

    Article  Google Scholar 

  61. Wang W, Liang S, Meyers T (2007) MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens Environ 112:623–635

    Article  Google Scholar 

Download references


This study was supported by a Grant from the National Aeronautics and Space Administration (NASA Grant # NAG13-02008). We thank Geoffrey Blate for his support in compiling the field data, George Huffman and Louis Giglio for providing expert advice during the development of this model, Tim Killeen and the Museo Noel Kempff Mercado for logistical support, the Fundacion Amigos de la Naturaleza (FAN), the Bolivia Forestry project (BOLFOR), and Wildlife Conservation Society (WCS) for access to field sites.

Author information



Corresponding author

Correspondence to Marc K. Steininger.



See Table 2.

Table 2 Abbreviations and terms in equations

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steininger, M.K., Tabor, K., Small, J. et al. A Satellite Model of Forest Flammability. Environmental Management 52, 136–150 (2013).

Download citation


  • Tropical forest
  • Fire risk
  • Drought
  • Remote sensing
  • Amazon
  • Bolivia