Skip to main content

Land Use Change on Coffee Farms in Southern Guatemala and its Environmental Consequences


Changes in commodity prices, such as the fall in coffee prices from 2000 to 2004, affect land use decisions on farms, and the environmental services they provide. A survey of 50 farms showed a 35 % loss in the area under coffee between 2000 and 2004 below 700 m with the majority of this area (64 %) being coffee agroforest systems that included native forest species. Loss of coffee only occurred on large and medium-scale farms; there was no change in area on cooperatives. Coffee productivity declined below 1,100 m altitude for sun and Inga shade coffee, but only below 700 m altitude for agroforest coffee. Coffee productivity was 37–53 % lower under agroforests than other systems. Increases in rubber and pasture were related to low altitude large-scale farms, and bananas and timber plantations to mid-altitude farms. Average aboveground carbon stocks for coffee agroforests of 39 t C ha−1 was similar to rubber plantations, but one-third to one half that of natural forest and timber plantations, respectively. Coffee agroforests had the highest native tree diversity of the productive systems (7–12 species ha−1) but lower than natural forest (31 species ha−1). Conversion of coffee agroforest to other land uses always led to a reduction in the quality of habitat for native biodiversity, especially avian, but was concentrated among certain farm types. Sustaining coffee agroforests for biodiversity conservation would require targeted interventions such as direct payments or market incentives specifically for biodiversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  • Bacon C (2008) Confronting the coffee crisis: can fair trade, organic and specialty coffees reduce the vulnerability of small-scale farmers in Northern Nicaragua? pp 155–178. In: Bacon CM, Mendez VE, Gliessman SR, Fox JA (eds) Confronting the coffee crisis: fair trade, sustainable livelihoods and ecosystems in Mexico and Central America. MIT, Cambridge, pp 177–205

  • Balderas-Torres A, Marchant R, Lovett J, Smart J, Tipper R (2009) Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol Econ. doi:10.1016/j.ecolecon.2009.09.007

  • Blackman A, Albers HJ, Avalos-Sartornio B, Crooks L (2008) Land cover in a managed forest ecosystem: Mexican shade coffee. Am J Agric Econ 90(1):216–231

    Article  Google Scholar 

  • Blackman A, Ávalos-Sartorio B, Chow J (2012) Land cover change in agroforestry: shade coffee in El Salvador. Land Econ 88:75–101

    Google Scholar 

  • Brown S, Gillespie AJR, Lugo AE (1989) Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci 35(4):881–902

    Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forests: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228

    Article  Google Scholar 

  • Cabrera MJ (2009) Propuesta de borrador de decreto para la creación de una modalidad de pago por servicios ambientales a los sistemas agroforestales con café. Fundación Café Forestal, Costa Rica

    Google Scholar 

  • Calvo L, Blake J (1998) Bird diversity and abundance in two different shade coffee plantations in Guatemala. Bird Conserv Int 8:207–308

    Article  Google Scholar 

  • Castro F, Montes E, Raine M (2004) La crisis cafetalera: Efectos y estrategias para hacerle frente. Sustainable development working paper 23, The World Bank, Washington

  • CATIE (2002) Sistema geografica sobre area cafetalera de Costa Rica. Informe final al Instituto de Café de Costa Rica, Turrialba, Costa Rica

    Google Scholar 

  • CEPAL (2002) Centroamérica: El impacto de la caída de los precios de café en 2001. Comisión Económica para América Latina y el Caribe, Chile

    Google Scholar 

  • DeClerk F, Esacalante M, Philpott S, Sinclair F, Soto-Pinto L, Vaast P (2007) Synthesis of coffee and tree cover for the CORRIDOR Project. CATIE, Costa Rica

    Google Scholar 

  • Eakin H, Bojorquez-Tapis LA, Montverde Diaz R, Castellanos E, Haggar J (2011) Adaptive capacity and social-environmental change: theoretical and operational modeling of smallholder coffee systems response in Mesoamerican Pacific Rim. Environ Manag 47:352–367

    Article  Google Scholar 

  • FONAFIFO (2005) Montos pagados en el PSA (Pago por Servicios Ambientales) en Costa Rica. Accessed 20 Sep 2010

  • Fournier L (1996) Fijación de carbono y diversidad biológica en el agroecosistema cafetero. Boletín PROMECAFE (IICA) 71:7–13

    Google Scholar 

  • Galloway G, Beer J (1997) Opportunidades para fomentar la silvicultura en cafetales de America Central. CATIE, Turrialba, Costa Rica Informe técnico No 285, 166p

  • Gordon C, Manson R, Sundberg J, Cruz-Angon A (2007) Biodiversity, profitability, and vegetation structure in a Mexican coffee agroecosystem. Agric Ecosyst Environ 118:256–266

    Article  Google Scholar 

  • Greenberg R, Bichier R, Sterling J (1997) Bird populations in rustic and planted shade coffee plantations of Eastern Chiapas, Mexico. Biotropica 29:501–514

    Article  Google Scholar 

  • Haggar J, Jerez R, Cuadra L, Alvarado U, Soto G (2012) Environmental and economic costs and benefits from sustainable certification of coffee in Nicaragua. Food Chain 2:24–41

    Article  Google Scholar 

  • Idol T, Haggar J, Cox L (2011) Ecosystem services from smallholder forestry and agroforestry, pp 209–268. In: Campbell B, Lopez S (eds) Issues in agroecology: present status and future prospects. Springer, Dordrecht

  • IPCC (2003) Good practice guidance for land-use, land-use change and forestry. Accessed 16 Sept 2010.

  • Lewin B, Giovannucci D, Varangis P (2004) coffee markets: new paradigms in global supply and demand. ARD discussion paper 3, World Bank, Washington, p 150

  • MAGFOR (2002) Elaboración del mapa de cultivo de café en Nicaragua. Ministerio de Agricultura, Ganadería y Forestal, Managua, Nicaragua

    Google Scholar 

  • Márquez L (1997) Validacion de campo de los métodos del Instituto Winrock para el establecimiento de parcelas permanentes de muestreo para cuantificar carbono en sistemas agroforestales. Universidad del Valle, Guatemala, p 90

    Google Scholar 

  • Martinez M (2005) Contribución económica del componente forestal en diferentes tipos d fincas cafetaleros en la bocacosta pacifica de Guatemala. MSc thesis, CATIE, Turrialba, Costa Rica

  • Martinez-Torres ME (2008) The benefits and sustainability of organic farming by peasant coffee farmers in Chiapas Mexico. In: Bacon CM, Mendez VE, Gliessman SR, Fox JA (eds) Confronting the coffee crisis: fair trade, sustainable livelihoods and ecosystems in Mexico and Central America. MIT, Cambridge, Massachusetts, pp 99–126

  • Medina BY, Muñoz CY, Haggar JP, Aguilar RM (2006) Metodología para la evaluación de servicios ambientales. ANACAFE, Guatemala, p 39

    Google Scholar 

  • Mena-Mosquera VE (2008) Relación entre el carbono almacenado en la biomasa total y la composición fisionómica de la vegetación en los sistemas agroforestales con café y en bosques secundarios del Corredor Biológico Volcánica Central-Talamanca, Costa Rica. MSc thesis, CATIE, Turrialba, Costa Rica

  • Mendez VE, Gliessman SR, Gilbert GS (2007) Tree biodiversity in farmer cooperatives of a shade coffee landscape of western El Salvador. Agric Ecosyst Environ 119:145–159

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Living beyond our means: natural assets and human well-being. Statement from the Board. World Resources Institute, Washington D.C

  • Moguel R, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Perfecto I, Rice R, Greenberg R, van der Moort M (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Philpott S, Dietsch T (2003) Coffee and conservation: a global context and the value of farmer involvement. Conserv Biol 17:1844–1846

    Article  Google Scholar 

  • Philpott SM, Lin BB, Jha S, Brines SA (2008) A multi-scale assessment of hurricane impacts based on land-use and topographic features. Agric Ecosyst Environ 128:12–20

    Article  Google Scholar 

  • Rainforest Alliance (2009) Guidance on coffee carbon project development using the simplified agroforestry methodology. Rainforest Alliance, Costa Rica

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Accessed 30 Sep 2010

  • SAN (2010) Sustainable agriculture standard. Sustainable agriculture network, San Jose, Costa Rica. Accessed 16 Sept 2010.

  • Scolel Té (2008) Annual report 2007. San Cristóbal de las Casas, Chiapas

  • Segura M, Kaninen M, Suarez D (2006) Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • SMBC (n.d.) The SMBC bird-friendly criteria at a glance. Smithsonian Migratory Bird Center. Accessed 16 Sept 2010.

  • Soto Pinto L, Perfecto I, Castillo-Hernandez J, Caballero-Nieto J (2000) Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agric Ecosyst Environ 80:61–69

    Article  Google Scholar 

  • Soto Pinto L, De Jong BHJ, Bazán E, Quechulpa S (2006) Potencial ecológico y económico de captura de carbono en cafetales. In: Pohlan J, Soto L, Barrera J (eds) El cafetal del futuro: Realidades y Visiones. Saker Verlag, Aachen, pp 373–380

    Google Scholar 

  • Suarez D (2002) Cuantificación y valoración económica del servicio ambiental almacenamiento de carbono en sistemas agroforestales de café en la comarca Yassica Sur, Matagalpa, Nicaragua. p 116. MSc thesis, CATIE, Turrialba, Nicaragua

  • Tucker CM, Eakin H, Castellanos E (2010) Perceptions of risk and adaptation: coffee producers, market shocks, and extreme weather in Central America and Mexico. Global Environ Change 20:23–32

    Article  Google Scholar 

  • UNFCCC (2009) Approved simplified baseline and monitoring methodology for small-scale agroforestry: afforestation and reforestation project activities under the clean development mechanism. CDM Executive Board AR-AMS0004/version 02

  • Virginio Filho E de M, Abarca S (2008) Cafetales para servicios ecosistémicos, con énfasis en el potencial de sumideros de carbono. CATIE-COOCAFE-FUNCAFOR, Costa Rica

  • Winrock (1998) Carbon sequestration and sustainable coffee in Guatemala. Winrock International Institute for Agricultural Development, Washington

    Google Scholar 

Download references


This study was conducted by the Guatemala National Coffee Association, with funding from the British Embassy in Guatemala and logistic support from the Palajunoj Producers Association. We thank Stephen Young for his advice on the statistical analysis of the land use change data.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jeremy Haggar.



See Tables 4, 5, and 6.

Table 4 Format of questionnaire on land use change on 50 surveyed farms
Table 5 GLM analyses of effects of farm type, altitude, and coffee system, and their interactions, on (a) change in area of coffee, (b) change in coffee productivity
Table 6 Tree species found in three coffee agroforests inventoried in the Ocosito watershed, Guatemala

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haggar, J., Medina, B., Aguilar, R.M. et al. Land Use Change on Coffee Farms in Southern Guatemala and its Environmental Consequences. Environmental Management 51, 811–823 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: