Skip to main content

Advertisement

Log in

Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain)

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the “Ecological Limits of Hydrologic Alteration (ELOHA)”. The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81–2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcazar J, Palau A (2010) Establishing environmental flow regimes in a Mediterranean watershed based on a regional classification. Journal of Hydrology 388:41–51

    Article  Google Scholar 

  • Alvarez J, Sanchez A, Quintas L (2005) SIMPA, a GRASS based tool for hydrological studies. International Journal of Geoinformatics 1:1–14

    Google Scholar 

  • Apse C, DePhilip M, Zimmermar J, Smith MP (2008) Developing in stream flow criteria to support ecologically sustainable water resources planning and management. The Nature Conservacy, Harrisburg, PA, USA, 196 pp

  • Argerich A, Puig MA, Pupilli E (2004) Effect of floods of different magnitude on the macroinvertebrate communities of Matarranya stream Ebro river basin, NE Spain. Limnetica 23(3–4):283–294

    Google Scholar 

  • Arthington AH, Pusey BJ (1993) In-stream flow management in Australia: Methods, deficiencies and future directions. Australian Biology 6:52–60

    Google Scholar 

  • Arthington AH, Pusey BJ (2003) Flow restoration and protection in Australian rivers. River Research and Applications 19:377–395

    Article  Google Scholar 

  • Arthington AH, King JM, O’Keeffe JH, Bunn SE, Day JA, Pusey BJ, Bluhdorn DR, Tharme R (1991) Development of an holistic approach for assessing environmental flow requirements of riverine ecosystems. In: Pigram JJ, Hooper BA (eds) Water allocation for the environment: proceeding of an international seminar and workshop. The Centre for Water Policy Research. University of New England, Armidale (Australia), pp 69–76

    Google Scholar 

  • Arthington AH, Bunn SE, Poff NL, Naiman RJ (2006) The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16:1311–1318

    Article  Google Scholar 

  • Arthington AH, Naiman RJ, McClain ME, Nilsson C (2010) Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology 55:1–16

    Article  Google Scholar 

  • Baeza D, Garcia de Jalon D (2005) Characterisation of stream flow regimes in central Spain, based on relevant hydrobiological parameters. Journal of Hydrology 310:266–279

    Article  Google Scholar 

  • Baeza D, Garcia de Jalon D, Alonso C, Marchamalo M, Cortazar J, Vizcaino P (2006) Breve historia de la aportación a la determinación de caudales ecológicos desde la Escuela de Montes de Madrid. XIII Congreso de la Asociación Española de Limnología, Barcelona

  • Barranco LM, Alvarez-Rodriguez J (2009) Time of concentration program using GRASS. (Originally entitled as Cálculo del tiempo de concentración en hidrología con GRASS) III Jornadas de SIG libre. University of Girona, Spain

    Google Scholar 

  • Bejarano MD, Marchamalo M, Garcia de Jalon D, Gonzalez del Tanago M (2010) Flow regime patterns and their controlling factors in the Ebro basin (Spain). Journal of Hydrology 385:323–335

    Article  Google Scholar 

  • Belmar O, Velasco J, Martinez-Capel F, Marin AA (2010) Natural flow regime, degree of alteration and environmental flows in the Mula stream (Segura River basin, SE Spain). Limnetica 29:353–368

    Google Scholar 

  • Boix D, Garcia-Berthou E, Gascon S, Benejam L, Tornes E, Sala J, Benito J, Munne A, Sola C, Sabater S (2010) Response of community structure to sustained drought in Mediterranean rivers. Journal of Hydrology 383:135–146

    Article  Google Scholar 

  • Bonada N, Prat N, Munne A, Rieradevall M, Alba-Tercedor J, Alvarez M, Aviles J, Casas J, Jaimez-Cuellar P, Mellado A, Moya G, Pardo I, Robles S, Ramon G, Suarez ML, Toro M, Vidal-Abarca MR, Vivas S, Zamora-Munoz C (2002) Ensayo de una tipología de las cuencas mediterráneas del proyecto GUADALMED siguiendo las directrices de la directiva marco del agua. Limnetica 21:77–98

    Google Scholar 

  • Bonada N, Doledec S, Statzner B (2007) Taxonomic and biological trait differences of stream macro invertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13:1658–1671

    Article  Google Scholar 

  • Boulton AJ (1989) Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in Central Victoria. Transactions of the Royal Society of South Australia 113:23–24

    Google Scholar 

  • Boulton AJ, Suter PJ (1986) Ecology of temporary streams: an Australian perspective. In: De Decker P, Williams WD (eds) Limnology in Australia. CSIRO, Melbourne, pp 313–327

    Google Scholar 

  • Bovee KD (1982) A Guide to stream habitat analysis using the instream flow incremental methodology. USDI Fish and Wildlife Services, Office of Biology Services, Washington DC

    Google Scholar 

  • Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30:492–507

    Article  Google Scholar 

  • Cade C (2008) “HIP” new software: the hydroecological integrity assessment process. US Geological Survey, Menlo Park

    Google Scholar 

  • CEDEX (2004) Caracterización de los tipos de ríos y lagos. Versión 1. Centro de Estudios y Experimentación de Obras Públicas, Madrid

  • CHS (2007) Estudio general sobre la Demarcación Hidrográfica del Segura. Confederación Hidrográfica del Segura, Murcia

  • Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Davies BR, O’Keeffe JH, Snaddon CD (1993) A synthesis of the ecological functioning conservation and management of South African river ecosystems. Water Research Commission, Pretoria (South Africa)

    Google Scholar 

  • Dewson ZS, James ABW, Death RG (2007) Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. Journal of the North American Benthological Society 26:754–766

    Article  Google Scholar 

  • Estrela T, Quintas L (1996a) A distributed hydrological model for water resources assessment in large basins. 1st International Conference on Rivertech 96. IWRA, Chicago

  • Estrela T, Quintas L (1996b) El sistema integrado de modelización precipitación-aportación SIMPA. Revista de Ingeniería Civil 104:43–52

    Google Scholar 

  • Estrela T, Cabezas F, Estrada F (1999) La evaluación de los recursos hídricos en el Libro Blanco del Agua en España. Ingeniería del Agua 6:125–138

    Google Scholar 

  • Ferreira T, Oliveira J, Caiola N, De Sostoa A, Casals F, Cortes R, Economou A, Zogaris S, Garcia-Jalon D, Ilheu M, Martinez-Capel F, Pont D, Rogers C, Prenda J (2007) Ecological traits of fish assemblages from Mediterranean Europe and their responses to human disturbance. Fisheries Management and Ecology 14:473–481

    Article  CAS  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30:51–81

    Article  Google Scholar 

  • Hannah DM, Smith BPG, Gurnell AM, McGregor GR (2000) An approach to hydrograph classification. Hydrological Processes 14:317–338

    Article  Google Scholar 

  • Harris NM, Gurnell AM, Hannah DM, Petts GE (2000) Classification of river regimes: a context for hydroecology. Hydrological Processes 14:2831–2848

    Article  Google Scholar 

  • Kennard MJ, Mackay SJ, Pusey BJ, Olden JD, Marsh N (2010) Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies. River Research and Applications 26:137–156

    Google Scholar 

  • Kennen JG, Henriksen JA, Nieswand SP (2007) Development of the hydroecological integrity assessment process for determining environmental flows for New Jersey streams. US Geological Survey, Menlo Park

    Google Scholar 

  • Kennen JG, Henriksen JA, Heasley J, Cade BS, Terrell JW (2009) Application of the hydroecological integrity assessment process for missouri streams. US Geological Survey, Menlo Park

    Google Scholar 

  • King JM, Tharme R (1994) Assessment of the in-stream flow incremental methodology and initial development of alternative in-stream flow methodologies for South Africa. Water Research Comission, Pretoria

    Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48:1161–1172

    Article  Google Scholar 

  • Lake PS (2007) Flow-generated disturbances and ecological responses: floods and droughts. In: Wood PJ, Hannah DM, Sadler JP (eds) Hydroecology and ecohydrology. Past, present and future. Wiley, Chichester, pp 75–92

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elselvier, Amsterdam, p 836

    Google Scholar 

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends in Ecology and Evolution 19:94–100

    Article  Google Scholar 

  • Martinez C, Fernandez JA (2006) Índices de alteración hidrológica en ecosistemas fluviales. Monografía CEDEX, Madrid, p 178

    Google Scholar 

  • Mathews R, Richter BD (2007) Application of the indicators of hydrologic alteration software in environmental flow setting. Journal of the American Water Resources Association 43:1400–1413

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, p 300

    Google Scholar 

  • Mcnamay RA, Orth DJ, Dolloff CA, Frimpong EA (2011) A regional classification of unregulated stream flows: Spatial resolution and hierarchical frameworks. River Research and Applications 26:1–26. http://onlinelibrary.wiley.com/doi/10.1002/rra.1493/pdf

  • Mellado A (2005) Ecología de las Comunidades de Macroinvertebrados de la Cuenca del Río Segura (SE de España). Thesis/Dissertation, University of Murcia

  • Milhous RT (1998) Application of the principles of IFIM to the analysis of environmental flow needs for substrate maintenance in the Trinity River, northern California. US Geological Survey, Biological Research Division, Fort Collins and Water Research Institute, Prague

  • Ministry of Environment (2000) White paper book of waters in Spain Libro Blanco del Agua en España. Secretaría de Estado de Aguas y Costas, Madrid

    Google Scholar 

  • Ministry of Environment (2002) National Water Master Plan Plan Hidrológico Nacional. Secretaría de Estado de Aguas y Costas, Madrid

    Google Scholar 

  • Monk WA, Wood PJ, Hannah DM, Wilson DA, Extence CA, Chadd RP (2006) Flow variability and macro invertebrate community response within riverine systems. River Research and Applications 22:595–615

    Article  Google Scholar 

  • Monk WA, Wood PJ, Hannah DM, Wilson DA (2007) Selection of river flow indices for the assessment of hydroecological change. River Research and Applications 23:113–122

    Article  Google Scholar 

  • Moreno JL, Navarro C, De las Heras J (2006) Abiotic ecotypes in south-central Spanish rivers: reference conditions and pollution. Environmental Pollution 143:388–396

    Article  CAS  Google Scholar 

  • Munne A, Prat N (2004) Defining river types in a Mediterranean area: a methodology for the implementation of the EU Water Framework Directive. Environmental Management 33:1–19

    Article  Google Scholar 

  • Naiman RJ, Latterell JJ, Pettit NE, Olden JD (2008) Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience 340:629–643

    Article  Google Scholar 

  • Olden JD, Poff NL (2003) Redundancy and the choice of hydrologic indices for characterizing stream flow regimes. River Research and Applications 19:101–121

    Article  Google Scholar 

  • Peredo-Parada M, Martinez-Capel F, Quevedo D, Hernandez-Mascarell B (in press) Implementation of an eco-hydrological classification in chilean rivers. Gayana

  • Poff NL (1996) A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshwater Biology 36:71–91

    Article  Google Scholar 

  • Poff NL, Allan JD (1995) Functional-organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606–627

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47:769–784

    Article  Google Scholar 

  • Poff NL, Olden JD, Pepin DM, Bledsoe BP (2006) Placing global stream flow variability in geographic and geomorphic contexts. River Research and Applications 22:149–166

    Article  Google Scholar 

  • Poff NL, Richter BD, Arthington AH, Bunn SE, Naiman RJ, Kendy E, Acreman M, Apse C, Bledsoe BP, Freeman MC, Henriksen J, Jacobson RB, Kennen JG, Merritt DM, O’Keeffe JH, Olden JD, Rogers K, Tharme RE, Warner A (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55:147–170

    Article  Google Scholar 

  • Potenciano A, Villaverde JJ (2009) Témez model implementation in GRASS for water resources assessment: direct and groundwater responses. (Originally entitled as Implementación del modelo hidrológico de Témez para la evaluación de recursos hídricos con GRASS: fase superficial y subterránea). III Jornadas de SIG Libre, University of Girona, Girona

  • Pottgiesser T, Sommerhäuser M (2004) Fließgewässertypologie Deutschlands: Die Gewässertypen und ihre Steckbriefe als Beitrag zur Umsetzung der EU-Wasserrahmenrichtlinie. In: Steinberg C, Calmano W, Wilken R, Klapper H (eds) Handbuch Angewandte Limnologie. Ecomed Landsberg, Germany, pp 3–16

    Google Scholar 

  • Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10:1163–1174

    Article  Google Scholar 

  • Richter BD, Baumgartner JV, Wigington R, Braun DP (1997) How much water does a river need? Freshwater Biology 37:231–249

    Article  Google Scholar 

  • Richter BD, Warner AT, Meyer JL, Lutz K (2006) A collaborative and adaptive process for developing environmental flow recommendations. River Research and Applications 22:297–318

    Article  Google Scholar 

  • Ruiz JM (1998) Desarrollo de un modelo hidrológico conceptual distribuido de simulación continua integrado con un SIG. Thesis/Dissertation, Universidad Politécnica de Valencia

  • Sanchez-Montoya MD, Punti T, Suarez ML, Vidal-Abarca MD, Rieradevall M, Poquet JM, Zamora-Munoz C, Robles S, Alvarez M, Alba-Tercedor J, Toro M, Pujante AM, Munne A, Prat N (2007) Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology 52:2240–2255

    Article  Google Scholar 

  • Snelder TH, Biggs BJF (2002) Multiscale river environment classification for water resources management. Journal of the American Water Resources Association 38:1225–1239

    Article  Google Scholar 

  • Snelder TH, Lamouroux N, Leathwick JR, Pella H, Sauquet E, Shankar U (2009) Predictive mapping of the natural flow regimes of France. Journal of Hydrology 373:57–67

    Article  Google Scholar 

  • Sparks RE (1992) Risks of altering the hydrologic regime of large rivers. In: Cairns J, Niederlehner BR, Orvos DR (eds) Predicting ecosystem risk. Princeton Scientific Publishing Co, Princeton, pp 119–152

    Google Scholar 

  • Sparks RE (1995) Need for ecosystem management of large rivers and their floodplains. Bioscience 45:168–182

    Article  Google Scholar 

  • Stanford JA, Ward JV, Liss WJ, Frissell CA, Williams RN, Lichatowich JA, Coutant CC (1996) A general protocol for restoration of regulated rivers. Regulated Rivers-Research and Management 12:391–413

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38:913–920

    Google Scholar 

  • Temez JR (1977) Modelo matemático de transferencia de precipitación-aportación. Asimel

  • Tennant DL (1976) In stream flow regimes for fish, wildlife, recreation, and related environmental resources, In: Orsborn JF, Allman CH (eds) Symposium and specialty conference on in-stream flow needs. American Fisheries Society, Bethesda

  • Tharme RE (2003) A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19:397–441

    Article  Google Scholar 

  • Uys MC, O’Keeffe JH (1997) Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environmental Management 21:517–531

    Article  Google Scholar 

  • Vidal-Abarca MR, Suarez ML, Gómez R (2002) Caudales y aportaciones en la cuenca del Río Segura: Son fiables los datos hidrológicos? III Congreso Ibérico de la Fundación Nueva Cultura del Agua: La Directiva Marco del Agua: realidades y futuros, Seville

Download references

Acknowledgments

We wish to thank the University of Murcia for its financial support to Óscar Belmar by means of a pre-doctoral grant, the Euromediterranean Institute of Water for its support to the project “Hydrological classification of the rivers and streams in the Segura Basin and associated macroinvertebrate communities”, the Hydrographic Confederation of the Segura for providing the SIMPA model and Ton Snelder and Matías Peredo-Parada for their valuable feedback on early drafts of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Belmar.

Appendix

Appendix

See Table 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmar, O., Velasco, J. & Martinez-Capel, F. Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain). Environmental Management 47, 992–1004 (2011). https://doi.org/10.1007/s00267-011-9661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-011-9661-0

Keywords

Navigation