Skip to main content

Advertisement

Log in

Spatial Rule-Based Assessment of Habitat Potential to Predict Impact of Land Use Changes on Biodiversity at Municipal Scale

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

In human dominated landscapes, ecosystems are under increasing pressures caused by urbanization and infrastructure development. In Alpine valleys remnant natural areas are increasingly affected by habitat fragmentation and loss. In these contexts, there is a growing risk of local extinction for wildlife populations; hence assessing the consequences on biodiversity of proposed land use changes is extremely important. The article presents a methodology to assess the impacts of land use changes on target species at a local scale. The approach relies on the application of ecological profiles of target species for habitat potential (HP) assessment, using high resolution GIS-data within a multiple level framework. The HP, in this framework, is based on a species-specific assessment of the suitability of a site, as well of surrounding areas. This assessment is performed through spatial rules, structured as sets of queries on landscape objects. We show that by considering spatial dependencies in habitat assessment it is possible to perform better quantification of impacts of local-level land use changes on habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akcakaya HR, Sjogren-Gulve P (2000) Population viability analyses in conservation planning: an overview. Ecologial Bulletins, Swedish Natural Science Research Council 48:9–22

    Google Scholar 

  • Amici V, Geri F, Battisti C (2010) An integrated method to create habitat suitability models for fragmented landscapes. Journal for Nature Conservation 18:215–223

    Article  Google Scholar 

  • Bellamy PE, Brown NJ, Enoksson B, Firbank LG, Fuller RJ, Hinsley SA, Schotman AGM (1998) The influences of habitat landscape structure and climate on local distribution patterns of the nuthatch (Sitta europaea L.). Oecologia 115:127–136

    Article  Google Scholar 

  • Berg L, Berg A (1998) Nest site selection by the dormouse Muscardinus avellanarius in two different landscapes. Annales Zoologici Fennici 35:115–122

    Google Scholar 

  • Boitani L, Corsi F, Falcucci A, Maiorano L, Marzetti I, Masi M, Montemaggiori A, Ottaviani D, Reggiani G, Rondinini C (2002) Rete Ecologica Nazionale. Un approccio alla conservazione dei vertebrati italiani. http://www.gisbau.uniroma1.it/species.php. Accessed 25 May 2009

  • Brambilla M, Rubolini D, Guidali F (2007) Between land abandonment and agricultural intensification: habitat preferences of Red-backed Shrikes Lanius collurio in low-intensity farming conditions. Bird Study 54:160–167

    Article  Google Scholar 

  • Bright PW (1998) Behaviour of specialist species in habitat corridors: arboreal dormice avoid corridor gaps. Animal Behaviour 56:1485–1490

    Article  Google Scholar 

  • Bright PW, Mitchell P, Morris PA (1994) Dormouse distribution: survey techniques, insular ecology and selection of sites for conservation. The Journal of Applied Ecology 31:329–339

    Article  Google Scholar 

  • Brotons L, MaÑosa S, Estrada J (2004) Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodiversity and Conservation 13:1039–1058

    Article  Google Scholar 

  • Burger A, Page R (2007) The need for biological realism in habitat modeling: a reinterpretation of Zharikov et al. (2006). Landscape Ecology 22:1273–1281

    Article  Google Scholar 

  • Davies CE, Moss D, Hill MO (2004) EUNIS Habitat Classification Revised 2004. European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, Dorchester, UK. p 310

  • Doncaster CP, Rondinini C, Johnson PCD (2001) Field test for environmental correlates of dispersal in hedgehogs Erinaceus europaeus. Journal of Animal Ecology 70:33–46

    Article  Google Scholar 

  • Geneletti D (2006) Some common shortcomings in the treatment of impacts of linear infrastructures on natural habitat. Environmental Impact Assessment Review 26:257–267

    Article  Google Scholar 

  • Geneletti D (2008) Incorporating biodiversity assets in spatial planning: methodological proposal and development of a planning support system. Landscape and Urban Planning 84:252–265

    Article  Google Scholar 

  • Gentile FF, De Bernardi F (2004) Amphibians in a human-dominated landscape: the community structure is related to habitat features and isolation. Biological Conservation 119:219–230

    Article  Google Scholar 

  • González-Varo J, López-Bao J, Guitián J (2008) Presence and abundance of the Eurasian nuthatch Sitta europaea in relation to the size, isolation and the intensity of management of chestnut woodlands in the NW Iberian Peninsula. Landscape Ecology 23:79–89

    Article  Google Scholar 

  • Hanski I (1994) A practical model of metapopulation dynamics. The Journal of Animal Ecology 63:151–162

    Article  Google Scholar 

  • Hanski I, Beverton RJH (1994) Spatial scale, patchiness and population dynamics on land [and discussion]. Philosophical Transactions: Biological Sciences 343:19–25

    Article  Google Scholar 

  • Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling 145:111–121

    Article  Google Scholar 

  • Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 199:142–152

    Article  Google Scholar 

  • Huijser MP, Bergers PJM (2000) The effect of roads and traffic oh hedgehog (Erinaceus europaeus) populations. Biological Conservation 95:111–116

    Article  Google Scholar 

  • Jingan S, Jiupai N, Chaofu W, Deti X (2005) Land use change and its corresponding ecological responses: a review. Journal of Geographical Sciences 15:305–328

    Article  Google Scholar 

  • La Morgia V, Bona F, Badino G (2008) Bayesian modelling procedures for the evaluation of changes in wildlife habitat suitability: a case study of roe deer in the Italian Alps. Journal of Applied Ecology 45:863–872

    Article  Google Scholar 

  • Lambeck RJ (1997) Focal Species: a multi-species umbrella for nature conservation. Conservation Biology 11:849–856

    Article  Google Scholar 

  • Lee JT, Thompson S (2005) Targeting sites for habitat creation: an investigation into alternative scenarios. Landscape and Urban Planning 71:17–28

    Article  Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecology 19:389–399

    Article  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Nally RM, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2007) A checklist for ecological management of landscapes for conservation. Ecological Letters 10:1–14

    Article  Google Scholar 

  • Löfvenhaft K, Runborg S, Sjögren-Gulve P (2004) Biotope patterns and amphibian distribution as assessment tools in urban landscape planning. Landscape and Urban Planning 68:403–427

    Google Scholar 

  • Mandelik Y, Dayan T, Feitelson E (2005) Planning for biodiversity: the role of ecological impact assessment. Conservation Biology 19:1254–1261

    Article  Google Scholar 

  • Matthysen E (1999) Nuthatches (Sitta europaea: aves) in forest fragments: demography of a patchy population. Oecologia 119:501–509

    Article  Google Scholar 

  • Matthysen E, Schmidt KH (1987) Natal dispersal in the Nuthatch. Ornis Scandinavica 18:313–316

    Article  Google Scholar 

  • McRae BH, Schumaker NH, McKane RB, Busing RT, Solomon AM, Burdick CA (2008) A multi-model framework for simulating wildlife population response to land-use and climate change. Ecological Modelling 219:77–91

    Article  Google Scholar 

  • Mouton AM, De Baets B, Goethals PLM (2009) Knowledge-based versus data-driven fuzzy habitat suitability models for river management. Environmental Modelling & Software 24:982–993

    Article  Google Scholar 

  • Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4:355–364

    Article  Google Scholar 

  • Opdam P, van den Brink A (2007) Incorporating ecological sustainability into landscape planning. Landscape and Urban Planning 79:374–384

    Article  Google Scholar 

  • Opdam P, Foppen R, Vos C (2001) Bridging the gap between ecology and spatial planning in landscape ecology. Landscape Ecology 16:767–779

    Article  Google Scholar 

  • Opdam P, Verboom J, Pouwels R (2003) Landscape cohesion: an index for the conservation potential of landscapes for biodiversity. Landscape Ecology 18:113–126

    Article  Google Scholar 

  • Ortigosa GR, De Leo GA, Gatto M (2000) VVF: integrating modelling and GIS in a software tool for habitat suitability assessment. Environmental Modelling and Software 15:1–12

    Article  Google Scholar 

  • Papadimitriou F (2009) Modelling spatial landscape complexity using the Levenshtein algorithm. Ecological Informatics 4:48–55

    Article  Google Scholar 

  • Peter AKH (2001) Dispersal rates and distances in adult water frogs, Rana lessonae, R ridibunda, and their hybridogenetic associate R. esculenta. Herpetologica 57:449–459

    Google Scholar 

  • PostgreSQL Global Development Group (2009) PostgreSQL

  • Riitters KH, O’Neill RV, Jones KB (1997) Assessing habitat suitability at multiple scales: a landscape-level approach. Biological Conservation 81:191–202

    Article  Google Scholar 

  • Romero-Calcerrada R, Luque S (2006) Habitat quality assessment using weights-of-evidence based GIS modelling: the case of Picoides tridactylus as species indicator of the biodiversity value of the Finnish forest. Ecological Modelling 196:62–76

    Article  Google Scholar 

  • Rondinini C, Doncaster CP (2002) Roads as barriers to movement for hedgehogs. Functional Ecology 16:504–509

    Article  Google Scholar 

  • Roy PS, Tomar S (2000) Biodiversity characterization at landscape level using geospatial modelling technique. Biological Conservation 95:95–109

    Article  Google Scholar 

  • Seoane J, Justribó JH, García F, Retamar J, Rabadán C, Atienza JC (2006) Habitat-suitability modelling to assess the effects of land-use changes on Dupont’s lark Chersophilus duponti: a case study in the Layna important bird area. Biological Conservation 128:241–252

    Article  Google Scholar 

  • Smith AM, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Swenson DP, Ambrose RF (2007) A spatial analysis of cumulative habitat loss in Southern California under the Clean Water Act Section 404 Program. Landscape and Urban Planning 82:41–55

    Article  Google Scholar 

  • Takács V, Kuźniak S, Tryjanowski P (2004) Prediction of changes in population size of the red-backed shrike (Lanius collurio) in Poland: population viability analysis. Biological Letters 41:119–133

    Google Scholar 

  • Telleria JL, Santos T (1993) Distributional patterns of insectivorous passerines in the Iberian Forests: does abundance decrease near the border? Journal of Biogeography 20:235–240

    Article  Google Scholar 

  • Theobald DM, Hobbs NT, Bearly T, Zack JA, Shenk T, Riebsame WE (2000) Incorporating biological information in local land-use decision making: designing a system for conservation planning. Landscape Ecology 15:35–45

    Article  Google Scholar 

  • van Langevelde F (2000) Scale of habitat connectivity and colonization in fragmented nuthatch populations. Ecography 23:614–622

    Article  Google Scholar 

  • van Rooij SAM, van der Sluis T, Steingröver EG (2003) Networks for life; development of an ecological network for Persiceto (Emilia-Romagna, Italy). Alterra, Green World Research, Wageningen, p 65

    Google Scholar 

  • Vanhinsbergh D, Evans A (2002) Habitat associations of the red-backed shrike (Lanius collurio) in Carinthia. Austria Journal of Ornithology 143:405–415

    Google Scholar 

  • Verboom J, Foppen R, Chardon P, Opdam P, Luttikhuizen P (2001) Standards for persistent habitat networks for vertebrate populations: the key patch approach. An example for marshland bird populations. Biological Conservation 100:89–101

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. The American Naturalist 183:24–41

    Article  Google Scholar 

  • Wiens JA, Milne BT (1989) Scaling of ‘landscapes’ in landscape ecology, or, landscape ecology from a beetle’s perspective. Landscape Ecology 3:87–96

    Article  Google Scholar 

  • Wu J, David JL (2002) A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecological Modelling 153:7–26

    Article  Google Scholar 

  • Young RP, Davison J, Trewby ID, Wilson GJ, Delahay RJ, Doncaster CP (2006) Abundance of hedgehogs (Erinaceus europaeus) in relation to the density and distribution of badgers (Meles meles). Journal of Zoology 269:349–356

    Article  Google Scholar 

Download references

Acknowledgments

Bernardino Romano (University of L’Aquila), Astrid van Teeffelen and Rogier Pouwels (ALTERRA Institute, Wageningen), Chiara Deflorian and Paolo Pedrini (Museo Tridentino Scienze Naturali, Trento) provided valuable suggestions. Heidi Hoffer (FEM-IASMA) reviewed the text. Two anonymous reviewers contributed to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Scolozzi.

Appendix 1

Appendix 1

Sets of Classification Rules for the Six Target Species

We report the original names of the third level EUNIS categories, in some cases we only report the code for the second level (e,g., E1 instead of E1.1) or the first level (e.g., J instead of J1, or J1.1) meaning all the relative sub-categories are included.

See Tables 5, 6, 7, 8, 9, 10

Table 5 Classification rules for Rana synlklepton esculenta
Table 6 Classification rules for Calopteryx virgo
Table 7 Classification rules for Lanius collurio
Table 8 Classification rules for Erinacaeus europaeus
Table 9 Classification rules for Sitta europaea
Table 10 Classification rules for Muscardinus avellanarius

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scolozzi, R., Geneletti, D. Spatial Rule-Based Assessment of Habitat Potential to Predict Impact of Land Use Changes on Biodiversity at Municipal Scale. Environmental Management 47, 368–383 (2011). https://doi.org/10.1007/s00267-011-9613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-011-9613-8

Keywords

Navigation