Skip to main content

Advertisement

Log in

Response of Soil Inorganic Nitrogen to Land Use and Topographic Position in the Cofre de Perote Volcano (Mexico)

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005–August 2006) with 11 observations. Significant differences in soil NH4 +–N and NO3 –N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 –N content. In tropical cloud forest and grassland, high soil NH4 +–N and low NO3 –N content were recorded, while soil NO3 –N content was high in coffee crop. Low NO3 –N contents could mean a substantial microbial assimilation of NO3 –N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function (N = 33 + 2459exp−0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andersson P, Berggren D, Nilsson I (2002) Indices for N status and nitrate leaching from Norway spruce (Picea abies (L.) Karst.) stands in Sweden. Forest Ecology and Management 157:39–53

    Article  Google Scholar 

  • Bernabe N, Williams-Linera G, Palacios-Rios M (1999) Tree ferns in the interior and at the edge of a Mexican cloud forest remnant: spore germination and sporophyte survival and establishment. Biotropica 31:83–88

    Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs 75:139–157

    Article  Google Scholar 

  • Booth MS, Stark JM, Hart SC (2006) Soil-mixing effects on inorganic nitrogen production and consumption in forest and shrubland soils. Plant and Soil 289:5–15

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Inorganic forms of nitrogen. In: Black CA (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy 9. ASA, Madison, WI, USA, pp 1179–1237

    Google Scholar 

  • Brubaker SC, Jones AJ, Lewis DT, Frank K (1993) Soil properties associated with slope positions. Soil Science Society of America Journal 57:235–239

    Article  Google Scholar 

  • Bruijnzeel LA, Hamilton LS (2000) Decision time for cloud forests. IHP Humid Tropics Programme, Series No. 13, UNESCO

  • Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. UNEP-WCMC, Cambridge, UK

    Google Scholar 

  • Carter MR (ed) (1993) Soil sampling and methods of analysis. Canadian society of soil science. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Castillo-Campos G (1991) Vegetación y flora del Municipio de Xalapa, Veracruz. Instituto de Ecología A. C., H. Ayuntamiento de Xalapa, Veracruz, p 148

    Google Scholar 

  • ChJ Still, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Article  Google Scholar 

  • Davidson EA, Matson PA, Vitousek PM, Riley R, Dunkin K, Garciamendez G, Maass JM (1993) Processes regulating soil emissions of NO and N2O in a seasonally dry tropical forest. Ecology 74:130–139

    Article  CAS  Google Scholar 

  • Fang S, Xie B, Zhang H (2007) Nitrogen dynamics and mineralization in degraded agricultural soil mulched with fresh grass. Plant and Soil 300:269–280

    Article  CAS  Google Scholar 

  • Frank DA, Groffman PM (1998) Denitrification in a semi-arid grazing ecosystem. Oecologia 17:564–569

    Article  Google Scholar 

  • Frank DA, Groffman PM, Evans RD, Tracy BF (2000) Ungulate stimulation of N cycling in Yellowstone Park Grasslands. Oecologia 123:116–123

    Article  Google Scholar 

  • Fu BJ, Liu SL, Chen LD, Lü YH, Qiu J (2004) Soil quality regime in relation to land cover and slope position across a highly modified slope landscape. Ecological Research 19:111–118

    Article  Google Scholar 

  • Goodale CL, Aber JD (2001) The long-term effects of land use history on N cycling in northern hardwood forests. Ecological Applications 11:253–267

    Article  Google Scholar 

  • Hamilton LS, Juvik JO, Scatena FN (eds) (1994) Tropical montane cloud forests. Springer-Verlag, New York

    Google Scholar 

  • Hart SC, Nason GE, Myrold DD, Perry DA (1994) Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–891

    Article  Google Scholar 

  • Hayatsu M, Tago K, Saito M (2008) Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition 54:33–45

    Article  CAS  Google Scholar 

  • Hoffmann O (1993) Rumbos y Paisajes de Xico: Geografía de un Municipio de la Sierra de Veracruz. ORSTOM, Instituto de Ecología, A. C., Xalapa, Veracruz, Mexico

    Google Scholar 

  • Isaac ME, Timmer VR (2007) Comparing in situ methods for measuring nitrogen mineralization under mock precipitation regimes. Canadian Journal of Soil Science 87:39–42

    CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources. World Soil Resources Reports No. 103. FAO, Rome

  • Kirschbaum MUF (2006) The temperature dependence of organic matter decomposition: still a topic of debate. Soil Biology and Biochemistry 38:2510–2518

    Article  CAS  Google Scholar 

  • Landi A, Mermut AR, Anderson DW (2004) Carbon distribution in a hummocky landscape from Saskatchewan, Canada. Soil Science Society of America Journal 68:175–184

    Article  CAS  Google Scholar 

  • Lin B, Liu Q, Wu Y, He H (2006) Nutrient and litter patterns in three subalpine coniferous forest of Western Sichuan, China. Pedosphere 16:380–389

    Article  CAS  Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology 15:184–195

    Article  Google Scholar 

  • Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology 10:592–600

    Article  Google Scholar 

  • Martin WKE, Timmer VR (2006) Capturing spatial variability of soil and litter properties in a forest stand by landform segmentation procedures. Geoderma 132:169–181

    Article  Google Scholar 

  • Morris SJ, Boerner REJ (1998) Landscape patterns of nitrogen mineralization and nitrification in southern Ohio hardwood forests. Landscape Ecology 13:215–224

    Article  Google Scholar 

  • Muñoz-Villers LE, Equihua M (2007) Generación de escurrimientos y rendimientos hídricos en microcuencas de bosque mesófilo de montaña maduro y secundario (regeneración), en el centro de Veracruz, México. En Reporte técnico final del proyecto No. INE/A1-064/2007. Instituto de Ecología, A. C.-Vrije Universiteit Ámsterdam-Instituto Nacional de Ecología. Xalapa, Ver., México

  • Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8:105–123

    Article  Google Scholar 

  • Neill C, Piccolo MC, Cerri CC, Steudler PA, Melillo JM, Brito MM (1997) Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110:243–252

    Article  Google Scholar 

  • Norton JB, Sandor JA, White CS (2003) Hillslope soils and organic matter dynamics within a Native American agroecosystem on the Colorado Plateau. Soil Science Society of America Journal 67:225–234

    Article  CAS  Google Scholar 

  • Owen JS, Wang MK, Wang CH, King HB, Sun HL (2003) Net N mineralization and nitrification rates in a forested ecosystem in northeastern Taiwan. Forest Ecology and Management 176:519–530

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  CAS  Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Limusa, México, pp 315–326

    Google Scholar 

  • Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica Mexicana 35:25–44

    Google Scholar 

  • SAS Institute Inc. (2000) SAS User′s Guide: Statistic. SAS Institute, Inc, Cary, NC, USA

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic Press, San Diego, USA

    Google Scholar 

  • Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998) Biomass and CO2 flux in wet sedge tundra: responses to nutrients, temperature, and light. Ecological Monographs 68:75–97

    Google Scholar 

  • Sierra J (1997) Temperature and soil moisture dependence of N mineralization in intact soil cores. Soil Biological and Biochemistry 29:1557–1563

    Article  CAS  Google Scholar 

  • Soon YK, Malhi SS (2005) Soil nitrogen dynamics as affected by landscape position and nitrogen fertilizer. Canadian Journal of Soil Science 85:579–587

    Google Scholar 

  • Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64

    Article  CAS  Google Scholar 

  • Thwaites RN, Slater BK (2000) Soil–landscape resource assessment for plantations: a conceptual framework towards an explicit multi-scale approach. Forest Ecology and Management 138:123–138

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemical 13:87–115

    Google Scholar 

  • Wang C, Wan S, Xing X, Zhang L, Han X (2006) Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biological and Biochemistry 38:1101–1110

    Article  CAS  Google Scholar 

  • Williams-Linera G (1992) Ecología del paisaje y el bosque mesófilo de montaña en el centro de Veracruz. Ciencia y Desarrollo 105:132–138

    Google Scholar 

  • Williams-Linera G (2003) Temporal and spatial phenological variation of understory shrubs in a tropical montane cloud forest. Biotropica 35:28–36

    Google Scholar 

  • Yimer F, Ledin S, Abdelkadir A (2006) Soil property variations in relation to topographic aspect and vegetation community in the south-eastern highlands of Ethiopia. Forest Ecology and Management 232:90–99

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by CONACYT (No. 43082). I would like to thank Lourdes Cruz Huerta and Ninfa Portilla for assisting with laboratory analyses and Rosario Landgrave for providing geographical information and a location map for the study sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Campos C..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos C., A. Response of Soil Inorganic Nitrogen to Land Use and Topographic Position in the Cofre de Perote Volcano (Mexico). Environmental Management 46, 213–224 (2010). https://doi.org/10.1007/s00267-010-9517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-010-9517-z

Keywords

Navigation