Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change

Abstract

The study deals with the problem of evaluating management strategies for pure stands of Norway spruce (Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2% would decrease the amount of carbon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andreassen K, Øyen BH (2002) Economic consequences of three silvicultural methods in uneven-aged mature coastal spruce forests of central Norway. Forestry 75:483–488

    Article  Google Scholar 

  2. Backeus S, Winkström P, Lämas T (2005) A model for regional analysis of carbon sequestration and timber production. Forest Ecology and Management 216:28–40

    Article  Google Scholar 

  3. Baskent EZ, Sedat K (2005) Developing alternative timber harvesting strategies with linear programming in preparing forest management plans. Turkish Journal of Agriculture and Forestry 29:1–13

    Google Scholar 

  4. Baskent EZ, Sedat K, Yolasigmaz HA (2008) Comparing multipurpose forest management with timber management, incorporating timber, carbon and oxygen values: A case study. Scandinavian Journal of Forest Research 23:105–120

    Article  Google Scholar 

  5. BMELV (2005) Die zweite Bundeswaldinventur - BWI2 - Der Inventurbericht. Bonn, 231 pp

  6. Bolte A, Eisenhauer D, Ehrhart HP, Groß J, Hanewinkel M, Kölling C, Profft I, Rohde M, Amereller K (2009) Klimawandel und Forstwirtschaft - Übereinstimmungen und Unterschiede bei der Einschätzung der Anpassungsnotwendigkeiten und Anpassungsstrategien der Bundesländer. Landbauforschung vTI Agriculture and Forestry Research (in German, submitted)

  7. Brainard J, Bateman I, Lovett A (2009) The social value of carbon sequestered in Great Britain’s woodlands. Ecological Economics 68:1257–1267

    Article  Google Scholar 

  8. Bredahl Jacobsen J, Möhring B, Wippermann C (2004) Business economics of conversion and transformation—a case study of Norway spruce in Northern Germany. In: Spiecker H, Hansen J, Klimo E, Skovsgaard J, Sterba H, von Teuffel K (eds) Norway spruce conversion: options and consequences. European Forest Institute, Research Report 18. S. Brill, Leiden, Boston, Köln, pp 225–252

  9. Briceno-Elizondo E, Jäger D, Lexer MJ, Garcia-Gonzalo J, Peltola H, Kellomäki S (2008) Multi-criteria evaluation of multi-purpose treatment programmes for Finnish boreal forests under changing climate. Ecological Indicators 8:26–45

    Article  Google Scholar 

  10. Bugmann H, Grote R, Lasch P, Lindner M, Suckow F (1997) A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren GMJ, Kramer K (eds) Global change impacts on tree physiology and forest ecosystems. Forestry sciences, vol 52. KLuwer Academic Publishers, Dordrecht, pp 255–261

    Google Scholar 

  11. Buongiorno J (2001) Quantifying the implications of transformation from even to uneven-aged forest stands. Forest Ecology and Management 151:121–132

    Article  Google Scholar 

  12. Buongiorno J, Gilless JK (2003) Decision methods for forest resource management. Academic Press, Amsterdam (Netherlands), 235 pp

    Google Scholar 

  13. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 420:1456–1457

    Article  Google Scholar 

  14. Dale V, Joyce L, McNulty S, Neilson R, Ayres M, Flannigan M, Hanson P, Irland L, Lugo A, Peterson CJ, Simberloff D, Swanson F, Stocks B, Wotton M (2001) Climate change and forest disturbances. BioScience 51:723–734

    Article  Google Scholar 

  15. Deutsche Bank (2007) Investing in climate change an asset management perspective. Deutsche asset management. DeAM Press, 52 pp

  16. Diaz-Balteiro L, Rodriguez LCE (2006) Optimal rotations on eucalyptus plantations including carbon sequestration––a comparison of results in Brazil and Spain. Forest Ecology and Management 229:247–258

    Article  Google Scholar 

  17. Dirsch R, Knoke T (2007) Zur finanziellen Analyse der Höhe des Holzvorrates: eine Anwendung der Linearen Programmierung im Rahmen der Forstbetriebsplannung. Allgemeine Forst und Jagd Zeitung 178:142–149

    Google Scholar 

  18. Frontline Inc (2007) Handbook of the solver premium plattform. Version 8.0 for Use with Excel 2000–2007, 407 pp

  19. Gutiérrez VH, Zapata M, Sierra C, Laguado W, Santacruz A (2006) Maximizing the profitability of forestry projects under the Clean Development Mechanism using a forest management optimization model. Forest Ecology and Management 226:341–350

    Article  Google Scholar 

  20. Hanewinkel M (2001) Economic aspects of the transformation from even-aged pure stands of Norway spruce to uneven-aged mixed stands of Norway spruce and beech. Forest Ecology and Management 151:181–193

    Article  Google Scholar 

  21. Hanewinkel M, Pretzsch H (2000) Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst) with a distance-dependent growth simulator. Forest Ecology and Management 134:55–70

    Article  Google Scholar 

  22. Hanewinkel M, Breidenbach J, Neeff T, Kublin E (2008) 77 years of natural disturbances in a mountain forest area––the influence of storm, snow and insect damage analysed with a long-term time-series. Canadian Journal of Forest Research 38:2249–2261

    Article  Google Scholar 

  23. Hanewinkel M, Hummel S, Cullmann D (2009) Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. Forest Ecology and Management. doi:10.1016/j.foreco.2009.08.21

  24. Hasenauer H (2006) Sustainable forest management: growth models for europe. Springer Verlag, Berlin-Heidelberg, 234 pp

    Book  Google Scholar 

  25. Jäkel A, Roth M (2004) Conversion of single-layered Scots pine monocultures into close-to-nature mixed hard timber forests: effects on parasitoid wasps as pest antagonists. European Journal of Forest Research 123:203–212

    Article  Google Scholar 

  26. Johann K (1982) Der A-Wert, ein objektiver Parameter zur Bestimmung der Freistellungsstärke von Zentralbäumen, Deutscher Verband der Forstlichen Versuchsanstalten, Sektion Ertragskunde, Weibersbrunn:146–158

  27. Kint V, Lasch P, Lindner M, Muys B (2009) Multi-purpose conversion management of Scots pine towards mixed oak–birch stands-A long-term simulation approach. Forest Ecology and Management 257:199–214

    Article  Google Scholar 

  28. Klimo E, Hager K, Kulhavy J (2000) Spruce monocultures in Central Europe–problems and prospects. EFI Proceedings No. 33:5–7

    Google Scholar 

  29. Knoke T (2009) Randbedingungen eines finanziell erfolgreichsten Dauerwaldes: Eine Übersicht anhand existierender Literatur. Schweiz Z Forstwes (Swiss Forestry Journal) (in press)

  30. Knoke T, Plusczky N (2001) On economic consequences of transformation of a spruce (Picea abies L. Karst) dominated from regular to irregular age structure. Forest Ecology and Management 151:159–163

    Article  Google Scholar 

  31. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. European Journal of Forest Research 127:89–101

    Article  Google Scholar 

  32. Korhonen P (1998) Multiple objectives linear programming in supporting forest management. Proceedings of 2nd Berkeley-KVL conference on natural resource management and workshop, August 6–12, Copenhagen, 14 pp

  33. Lohmander P, Helles F (1987) Windthrow probability as a function of characteristics and shelter. Scandinavian Journal of Forest Research 2:227–238

    Article  Google Scholar 

  34. Mayer P, Dobbertin BPM, Hallenbarter D, Renaud JP, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Annals of Forest Science 62:303–311

    Article  CAS  Google Scholar 

  35. MLR (Ministerium Ländlicher Raum Baden-Württemberg) (1999) Richtlinie landesweiter Waldentwicklungstypen der Landesforstverwaltung Baden-Württemberg, Stuttgart, 54 pp

  36. Möhring B (2004) Betriebswirtschaftliche Analyse des Waldumbaus. Forst und Holz 59:523–530

    Google Scholar 

  37. Nagel J (1997) BWIN program for analysis and prognosis. User’s manual for version 3.0, Niedersächsische Forstliche Versuchsanstalt Göttingen, 44 pp

  38. Nautiyal JC, Pearse P (1967) Optimizing the conversion to sustained yield, a programming solution. Forest Science 13:131–139

    Google Scholar 

  39. Orois S S, Vilcko F (2002) Bewertung und Optimierung von Vornutzungen in Fichtenbeständen. Forstwissenschaftliches Centralblatt 121:250–264

    Google Scholar 

  40. Pretzsch H (2001) Modellierung des Waldwachstums. Parey, Hamburg, 341 pp

    Google Scholar 

  41. Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert ST (2008) Models for forest ecosystem management: A European perspective. Annals of Botany 101(8):1065–1087

    Article  CAS  Google Scholar 

  42. Price C, Wills R (1993) Time, discounting and the valuation of forestry’s carbon fluxes. Commonwealth Forestry Review 72:265–271

    Google Scholar 

  43. Rojo JMT, Orois SS (2005) A decision support system for optimizing the conversion of rotation forest stands to continuous cover forest stands. Forest Ecology and Management 207:109–120

    Article  Google Scholar 

  44. Roehle H (2007) Der Waldwachstumssimulator BWINPro-S: Kurzdarstellung und Anwendungsmöglichkeiten. http://www.forst.tu-dresden.de/Waldwachstum/simulator. Accessed Jan 31, 2009

  45. Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2009) An inventory-based approach for modeling single tree storm damage––experiences with the winter storm 1999 in south-western Germany. Canadian Journal of Forest Research (in review)

  46. Schröder J (2005) Zur Modellierung von Wachstum und Konkurrenz in Kiefern-Buchen-Waldumbaubeständen Nordwestsachsens, PhD Thesis, Tharandt, Technical University of Dresden, 345 pp

  47. Schröder J, Röhle H, Gerold D, Münder K (2007) Modeling individual-tree growth in stands under forest conversion in East Germany. European Journal of Forest Research 126:459–472

    Article  Google Scholar 

  48. Schütz JP (2002) Silvicultural tools to develop irregular and diverse forest structure. Forestry 75:329–337

    Article  Google Scholar 

  49. Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies L. Karst) and beech (Fagus sylvatica L.) forest stands to storms and consequences for silviculture. European Journal of Forest Research 125:291–302

    Article  Google Scholar 

  50. Spiecker H (2000) Growth of Norway spruce under changing environmental conditions in Europe. EFI Proceedings 33:11–26

    Google Scholar 

  51. Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe-temperate zone. Journal of Environmental Management 67:55–65

    Article  Google Scholar 

  52. Spiecker H, Hansen J, Klimo E, Skovsgaard J, Sterba H, von Teuffel K (eds) (2004) Norway spruce conversion: options and consequences. European Forest Institute, Research Report 18. S. Brill, Leiden, Boston, Köln, 269 pp

  53. UNFCCC (2002) Report of the conference of the parties on its 7th session of UNFCCC (United Nations framework convention on climate change), held at Marrakesh (29 Octobre- 10 Novembre 2001), 69 pp

  54. Vande Walle I, Van Camp N, Perrin D, Lemeur R, Verheyen K, Van Wesemael B, Laitat E (2005) Growing stock-based assessment of the carbon in the Belgian forest biomass. Annals of Forest Science 62:853–864

    Article  Google Scholar 

  55. von Lüpke B (2004) Risikominderung durch Mischwälder und naturnaher Waldbau: ein Spannungsfeld. Forstarchiv 75:43–50

    Google Scholar 

  56. Yoshimoto A, Marusak R (2007) Evaluations of carbon sequestration and thinning regimes within the optimization framework for forest management. European Journal of Forest Research 126:315–329

    Article  Google Scholar 

  57. Yousefpour R, Hanewinkel M (2009) Modelling of forest conversion planning with an adaptive simulation-optimization approach and simultaneous consideration of the values of timber, carbon and biodiversity. Ecological Economics 68:1711–1722

    Article  Google Scholar 

  58. Zell J (2008) Methoden für die Ermittlung, Modellierung und Prognose der Kohlenstoffspeicherung in Wäldern auf Grundlage permanenter Großrauminventuren, PhD Dissertation, Universität Freiburg, 152 pp

Download references

Acknowledgments

The authors would like to express their gratitude to four anonymous reviewers for useful comments on an earlier version of the manuscript. This study was a part of the first author’s PhD thesis, financed by the Ministry of Science, Research and Technology of Iran, at the Institute of Forestry Economics of the University of Freiburg and the project “Forix” within the program of the German–French University (DFH).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rasoul Yousefpour.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yousefpour, R., Hanewinkel, M. & Le Moguédec, G. Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change. Environmental Management 45, 387–402 (2010). https://doi.org/10.1007/s00267-009-9409-2

Download citation

Keywords

  • BWINPro-S
  • Norway spruce transformation
  • Climate change
  • Mitigation
  • Adaptation
  • Carbon sequestration