Skip to main content

Advertisement

Log in

Framework and Tools for Agricultural Landscape Assessment Relating to Water Quality Protection

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ’eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers’ fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aurousseau P, Squividant H (1995) Rôle environnemental et identification cartographique des sols hydromorphes de bas-fonds. pp 75–85 in Ingéniéries, E.A.T. no spécial La rade de Brest

  • Aurousseau P, Gascuel-Odoux C, Squividant H (1998) Méthode d’évaluation d’un risque parcellaire pour la contamination des eaux superficielles par les pesticides. Etude et gestion des sols 5:143–156

    Google Scholar 

  • Aurousseau P, Squividant H, Tortrat F, Gascuel-Odoux C, Cordier MO (2008) A plot drainage network as a conceptual tool for the spatialisation of surface flow pathways in agricultural watersheds. Computer & Geosciences (in press)

  • Basnyat P, Teeter L, Flynn KM, Lockaby BG (1999) Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries. Environmental Management 23:539–549

    Article  Google Scholar 

  • Basnyat P, Teeter LD, Lockaby BG, Flynn KM (2000) The use of remote sensing and GIS in watershed level analyses of non-point source pollution problems. Forest Ecology and Management 128:65–73

    Article  Google Scholar 

  • Baudry J (1997) Buffer zones and farming systems. In: Haycock N, Burt TP, Goulding KWT, Pinay G (eds) Buffer zones: their processes and potential in water protection. Quest Books, pp 275–282

  • Baudry J, Thenail C (2004) Interaction between farming systems, riparian zones, and landscape patterns: a case study in western France. Landscape and Urban Planning 67:121–129

    Article  Google Scholar 

  • Baudry J, Burel F, Thenail C, Le Cœur D (2000) A holistic landscape ecological study of the interactions between farming activities and ecological patterns in Brittany, France. Landscape and Urban Planning 50:119–128

    Article  Google Scholar 

  • Beaujouan V, Durand P, Ruiz L (2001) Modelling the effect of the spatial distribution of agricultural practices on nitrogen fluxes in rural watersheds. Ecological Modelling 137:93–105

    Article  CAS  Google Scholar 

  • Beaujouan V, Durand P, Ruiz L, Aurousseau P, Cotteret G (2002) A hydrological model dedicated to Topography-bases simulation of nitrogen transfer and transformation. Rationale and application to the geomorphology-denitrification relationship. Hydrological Processes 16:493–507

    Article  Google Scholar 

  • Bidois J (1999) Aménagement de zones humides ripariennes pour la reconquête de la qualité de l’eau: expérimentation et modélisation. Doctorat. Université de Rennes 1

  • Burt T (2001) Integrated management of sensitive catchment systems. Catena 42:275–290

    Article  CAS  Google Scholar 

  • Burt TP, Pinay G (2005) Linking hydrology and biogeochemistry in complex landscapes. Progress in Physical Geography 29:297–316

    Article  Google Scholar 

  • Cerdan O, Souchère V, Lecomte V, Couturier A, Le Bissonnais Y (2001) Incorporating soil surface crusting processes in an expert-based runoff model: sealing and transfer by runoff and erosion related to agricultural management. Catena 46:189–205

    Article  Google Scholar 

  • Clark MJ (1998) Putting water in its place: a perspective in GIS in hydrology and water management. Hydrological Processes 12:823–834

    Article  Google Scholar 

  • Cordier MO, Garcia F, Gascuel-Odoux C, Masson V, Salmon-Monviola J, Tortrat F, Trepos R (2005) A machine learning approach for evaluating the impact of land use and management practices on streamwater pollution by pesticides. In: Zerger A, Argent RM (eds) MODSIM 2005. Modelling and Simulation Society of Australia and New Zealand. International Congress on Modelling and Simulation, 12–15 December 2005, Melbourne, pp 2651–2557

  • de Roo APJ, Wesseling CG, Ritsema CJ (1996) LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: I. Theory, input and output. Hydrological Processes 10:1107–1117

    Article  Google Scholar 

  • Devillers J, Farret R, Girardin P, Rivière JL, Soulas G (2005) Indicateurs pour évaluer les risques liés à l’utilisation des pesticides. Lavoisier Tec & Doc, Paris

    Google Scholar 

  • Dorioz JM, Wang D, Poulenard J, Trevisan D (2006) The effect of grass buffer strips on phosphorus dynamics—a critical review and synthesis as a basis for application in agricultural landscapes in France. Agriculture, Ecosystems & Environment 117:4–21

    Article  CAS  Google Scholar 

  • Dosskey MG (2002) Setting priorities for research on pollution reduction functions of agricultural buffers. Environmental Management 30:641–650

    Article  Google Scholar 

  • Durand P, Gascuel-Odoux C, Kao C, Merot P (2000) Une typologie hydrologique des petites zones humides ripariennes. Etude et gestion des sols 7:207–208

    Google Scholar 

  • Gascuel-Odoux C, Merot P, Crave A, Gineste P, Gresillon JM, Zhang Z (1998) Les zones contributives de fond de vallée: localisation, structure et fonctionnement hydrodynamique. In: Cheverry C (ed) Le programme CORMORAN ‘Caractérisation, observation et modélisation de la qualité des eaux en milieu agricole intensif. INRA, Paris, pp 129–142

    Google Scholar 

  • Heathwaite L, Sharpley A, Gburek W (2000) A conceptual approach for integrating phosphorus and nitrogen management at watershed scales. Journal of Environmental Quality 29:158–166

    Article  CAS  Google Scholar 

  • Heathwaite L, Sharpley A, Bechmann M (2003) The conceptual basis for a decision support framework to assess the risk of phosphorus loss at the field scale across Europe. Journal of Plant Nutrition and Soil Science 166:447–458

    Article  CAS  Google Scholar 

  • Heathwaite AL, Quinn PF, Hewett CJM (2005) Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. Journal of Hydrology 304:446–461

    Article  CAS  Google Scholar 

  • Janssen R, Goosen H, Verhoeven ML, Verhoeven JTA, Omtzigt AQA, Maltby E (2005) Decision support for integrated wetland management. Environmental Modelling and Software 20:215–229

    Article  Google Scholar 

  • Joannon A, Souchere V, Martin P, Papy F (2006) Reducing runoff by managing crop location at the catchment level, considering agronomic constraints at farm level. Land Degradation and Development 17:467–478

    Article  Google Scholar 

  • Leu CM, Singer H, Stamm Ch, Müller SR, Schawarzenbach RP (2004) Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in small agricultural catchment. Environmental Science and Technology 38:3827–3834

    Article  CAS  Google Scholar 

  • Machet JM, Laurent F, Chapot JY, Dore T, Dulout A (1997) Maîtrise de l’azote dans les intercultures et les jachères. In: Lemaire G, Nicolardot B (eds) Maîtrise de l’azote dans les agrosystèmes. INRA-Editions, série Les Colloques de l’INRA. INRA, Paris, pp 271–288

    Google Scholar 

  • Marshall EPJ, Moonen AC (2002) Fields margin in northern Europe:their function and interactions with agriculture. Agriculture, Ecosystems and Environment 89:5–21

    Article  Google Scholar 

  • Massa F, Gascuel-Odoux C, Merot P, Baudry J, Beduneau G, Blondel R, Durand P, Tico S, Troccaz O (2008) Territ’eau une méthode et des outils pour améliorer la gestion des paysages agricoles en vue de préserver la qualité de l’eau. Ingénieries (spécial issue: Azote, phosphore et pesticides):115–132

  • Merot P (1999) The influence of hedgerow systems on the hydrology of agricultural catchments in a temperate climate. Agronomie 19(8):655-669. doi:10.1051/agro:19990801

    Article  Google Scholar 

  • Merot P, Squividant H, Aurousseau P, Hefting M, Burt T, Maitre V, Kruk M, Butturini A, Thenail C, Viaud V (2003) Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient. Ecological Modelling 163:51–71

    Article  Google Scholar 

  • Merot P, Hubert-Moy L, Gascuel-Odoux C, Clément B, Durand P, Baudry J, Thenail C (2006) A method for improving the management of controversial wetland. Environmental Management 37:258–270

    Article  Google Scholar 

  • Montreuil O, Merot P (2006) Nitrogen removal in valley bottom wetlands: assessment at a large catchment scale. Journal Environmental Quality 35(6):2113-2122. http://dx.doi.org/doi:10.2134/jeq2006.0091

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and Water Assessment Tool. Theoretical documentation. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, TX

    Google Scholar 

  • Ouyang W, Hao FH, Wang XL (2008) Regional non point source organic pollution modeling and critical area identification for watershed best environmental management. Water, Air and Soil Pollution 187:251–261

    Article  CAS  Google Scholar 

  • Peschke G, Etzenberg C, Töpfer J, Zimmermann S, Miller G (1999) Runoff generation regionalization: analysis and a possible approach to a solution. IAHS Publication 254:147–156

    Google Scholar 

  • Pilkey OH, Pilkey-Jarvis L (2007) Useless arithmetic. Why environmental scientists can’t predict the future. Columbia University Press, New York

    Google Scholar 

  • Qiu Z (2003) A VSA-based strategy for placing conservation buffers in agricultural watersheds. Environmental Management 32:299–311

    Article  Google Scholar 

  • Rao MN, Waits DA, Neilsen ML (2000) A GIS-based modeling approach for implementation of sustainable farm management practices. Enviromental Modelling and Software 15:745–753

    Article  Google Scholar 

  • Reus J, Leendertse P, Bockstaller C, Fomsgaard I, Gutsche V, Lewis K, Nilsson C, Pussemier L, Trevisan M, van der Werf H, Alfarroba F, Blumel S, Isart J, McGrath D, Seppala T (2002) Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agriculture, Ecosystems and Environment 90:177–187

    Article  Google Scholar 

  • Scherrer S, Naef F (2003) A decision scheme to identify dominant flow processes at the plot-scale for the evaluation of contributing areas at the watershed scale. Hydrological Processes 17:391–401

    Article  Google Scholar 

  • Schmocker-Fackel P (2004) A method to delineate runoff processes in a watershed and its implications for runoff simulations. Ph.D. thesis. ETH, Zurich

  • Souchère V, King D, Daroussin J, Papy F, Capillon A (1998) Effects of tillage on runoff directions: consequences on runoff contributing area within agricultural watersheds. Journal of Hydrology 206:256–267

    Article  Google Scholar 

  • Thenail C, Baudry J (2005) Farm riparian land use and management: driving factors and tensions between technical and ecological functions. Environmental Management 36:640–653

    Article  Google Scholar 

  • Thenail C, Codet C (2003) Systèmes techniques de gestion des bordures de champs en exploitation agricole, et intégration des haies nouvelles. In: Lamarche H (ed) Bocagement, reconstitution et protection du bocage. Evaluation des politiques publiques de paysagement du territoire. INRA CNRS. Rapport de projet PEVS CNRS, Nanterre, pp 150–171

  • Tortrat F (2005) Modélisation orientée décision des processus de transfert par ruissellement et subsurface des herbicides dans les bassins versants agricoles. Thèse de l’Ecole Nationale Supérieure Agronomique de Rennes

  • U.S. Environmental Protection Agency (2008) Handbook for developing watershed plans to restore and protect our waters. Non Point Source Control Branch, Washington, DC

  • van Lanen HA, Demuth S (eds) (2002) FRIEND 2002. Regional hydrology: bridging the gap between research and practices. IAHS Publication 274. IAHS, Paris

  • Vertes F, Journet M, Alard V, Etesse A (2002) Le pâturage et les pertes d’azote. In: Alard V, Béranger C, Journet M (eds) A la recherche d’une agriculture durable: étude de systèmes herbagers économes en Bretagne. INRA Editions, collection “Espaces ruraux.” INRA, Paris, pp 115–144

  • Viaud V, Merot P, Baudry J (2004) Hydrochemical buffer assessment in agricultural landscape: from local to watershed scale. Environmental Management 34:559–573

    Article  Google Scholar 

  • Viaud V, Durand P, Merot P, Sauboua E, Saadi Z (2005) Modeling the impact of the spatial structure of a hedge network on the hydrology of a small catchment in a temperate climate. Agricultural Management 74:135–163

    Article  Google Scholar 

  • Wang X, Yang W, Melesse AM (2008) Using hydrologic equivalent wetland concept within swat to estimate streamflow in watersheds with numerous wetlands. Transactions of the ASABE 51:55–72

    Google Scholar 

Download references

Acknowledgments

This project was funded by the “Charte de développement pérenne de l’agriculture Bretonne,” under a European programme (FEDER). We thank the staff of the regional farmer counsel organization (Chambre d’Agricultures de Bretagne), who contributed greatly to this framework, particularly Robert Blondel and Sylvie Tico, as well as the scientists and stakeholders involved in the discussions. M. S. N. Carpenter revised and edited the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal Gascuel-Odoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gascuel-Odoux, C., Massa, F., Durand, P. et al. Framework and Tools for Agricultural Landscape Assessment Relating to Water Quality Protection. Environmental Management 43, 921–935 (2009). https://doi.org/10.1007/s00267-008-9244-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-008-9244-x

Keywords

Navigation