Skip to main content
Log in

When Has an Abandoned Field Become a Semi-Natural Grassland or Heathland?

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This study presents a meta-analysis of a collective dataset describing the succession from abandoned fields to semi-natural grassland and heathland vegetation over the past century. The study objectives were to develop a method for statistical discrimination between abandoned fields and semi-natural habitats and to analyze the probability that an abandoned field had developed into a semi-natural habitat. A statistical classification model was developed, based on lists of vascular plants from 2059 plots from Danish semi-natural grasslands and heathlands, and abandoned fields of varying age. This model was shown to discriminate effectively between abandoned fields and semi-natural habitats, and it was found to be potentially useful for the detection of abandoned fields approaching semi-natural vegetation. We suggest that the model may help clarify restoration targets and assess biological condition in formerly cultivated areas. Statistical modeling revealed that succession age, period of abandonment and succession trajectory had significant effects on the probability that abandoned fields reached the semi-natural phase. Our study indicates that restoration projects targeting grassland and heathland should take local species pools and soil fertility into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JE (1991) A conceptual framework for evaluating and quantifying naturalness. Conservation Biology 5:347–352

    Article  Google Scholar 

  • Andreasen C, Stryhn H, Streibig JC (1996) Decline of the flora in Danish arable fields. Journal of Applied Ecology 33:619–626

    Article  Google Scholar 

  • Anon (1991) CORINE biotopes manual, habitats of the European Community. EUR 12587/3, Office for Official Publications of the European Communities, Luxembourg, LX

  • Anon (1998) Bekæmpelsesmiddelstatistik 1997. Orientering fra Miljøstyrelsen nr. 6 1998. Miljø- og Energiministeriet, Miljøstyrelsen

  • Bakker JP, Berendse F (1999) Constraints on the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology and Evolution 14:63–68

    Article  Google Scholar 

  • Barbour MT, Swietlik WF, Jackson SK, Courtemanch DL, Davies SP, Yoder C (2000) Measuring the attainment of biological integrity in the USA: a critical element of ecological integrity. Hydrobiologia 422/423:453–464

    Article  CAS  Google Scholar 

  • Bruun HH, Ejrnæs R (2000) Classification of dry grassland vegetation in Denmark. Journal of Vegetation Science 11:585–596

    Article  Google Scholar 

  • Bruun HH, Fritzbøger B (2002) The past impact of livestock husbandry on dispersal of plant seeds in the landscape of Denmark. Ambio 31:425–431

    Article  Google Scholar 

  • Cousins SAO (2006) Plant species richness in midfield islets and road verges—the effect of landscape fragmentation. Biological Conservation 127:500–509

    Article  Google Scholar 

  • Crofts A, Jefferson RG (eds) (1999) The lowland grassland management handbook, 2nd edn. English Nature/The Wildlife Trusts, Peterborough, England

    Google Scholar 

  • Danish Nature Protection Legislation (1997) Lovbekendtgørelse nr. 835 af 1. nov. 1997 om naturbeskyttelse. København

  • Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters 4:421–428

    Article  Google Scholar 

  • Degn HJ (2001) Succession from farmland to heathland: a case for conservation of nature and historic farming methods. Biological Conservation 97:319–330

    Article  Google Scholar 

  • EC Habitats Directive (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Brussels, Belgium

    Google Scholar 

  • Ejrnæs R, Bruun HH (1995) Prediction of grassland quality for environmental management. Journal of Environmental Management 43:171–183

    Article  Google Scholar 

  • Ejrnæs R, Hansen DN, Aude E (2003) Changing course of secondary succession in abandoned sandy fields. Biological Conservation 109:343–350

    Article  Google Scholar 

  • Ejrnæs R, Aude E, Nygaard B, Münier B (2002) Prediction of habitat quality using ordination and neural networks. Ecological Applications 12:1180–1187

    Article  Google Scholar 

  • Ejrnæs R, Bruun HH, Graae BJ (2006) Community assembly in experimental grasslands: suitable environment or timely arrival? Ecology 87:1225–1233

    Article  Google Scholar 

  • Ejrnæs R, Bruun HH, Aude E, Buchwald E (2004) Developing a classifier for the habitats directive grassland types in Denmark using species lists for prediction. Applied Vegetation Science 7:71–80

    Article  Google Scholar 

  • Ferdinandsen C (1918) Undersøgelser over danske ukrudsformationer paa mineraljorder. Gyldendal, Copenhagen, Denmark

    Google Scholar 

  • Gibson CWD, Brown VK (1991) The nature and rate of development of calcareous grassland in Southern Britain. Biological Conservation 58:297–316

    Article  Google Scholar 

  • Gibson CWD, Brown VK (1992) Grazing and vegetation change—deflected or modified succession. Journal of Applied Ecology 29:120–131

    Article  Google Scholar 

  • Hansson M, Fogelfors H (1998) Management of permanent set-aside on arable land in Sweden. Journal of Applied Ecology 35:758–771

    Google Scholar 

  • Hill MO (1979) DECORANA: a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University. Ithaca, New York, USA

    Google Scholar 

  • Honnay O, Degroot B, Hermy M (1998) Ancient-forest plant species in western Belgium: a species list and possible ecological mechanisms. Belgian Journal of Botany 130:139–154

    Google Scholar 

  • Kirby KJ, Reid CM, Isaac D, Thomas RC (1998) The ancient woodland inventory in England and its uses. In: Kirby KJ, Watkins C (eds) The ecological history of European forests. CAB International, New York, USA, pp 323–336

    Google Scholar 

  • Lopez RD, Fennessy MS (2002) Testing the floristic quality assessment index as an indicator of wetland condition. Ecological Applications 12:487–497

    Article  Google Scholar 

  • Mathsoft (1999) S-Plus 2000 Professional release 2. 1988–1999 Mathsoft Inc. Cambridge, UK

  • McCune B, Mefford MJ (1999) PC-Ord for windows, 4.01. MjM Software, Oregon, USA

    Google Scholar 

  • Moog M, Chovanecs A (2000) Assessing the ecological integrity of rivers: walking the line among ecological, political and administrative interests. Hydrobiologia 422/423:99–109

    Article  Google Scholar 

  • Nordén B, Appelquist T (2001) Conceptual problems of ecological continuity and its bioindicators. Biodiversity and Conservation 10:779–791

    Article  Google Scholar 

  • Nordstedt G, Bader P, Ericsson L (2001) Polypores as indicators of conservation value in Corsican pine forests. Biological Conservation 99:347–354

    Article  Google Scholar 

  • Økland RH (1990) Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia Suppl. 1: 1–233

  • Pywell RF, Bullock JM, Hopkins A, Walker KJ, Sparks TH, Burke MJW, Peel S (2002) Restoration of species-rich grassland on arable land: assessing the limiting processes using a multisite experiment. Journal of Applied Ecology 39:294–309

    Article  Google Scholar 

  • Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Rolstad J, Gjerde I, Gundersen VS, Sætersdal M (2002) Use of indicator species to assess forest continuity: a critique. Conservation Biology 16:253–257

    Article  Google Scholar 

  • Rose F (1976) Lichenological indicators of age and environmenal continuity. In: Brown DH, Hawksworth DL, Bailey RH (eds) Woodlands. Lichenology: progress and problems. Academic Press, New York, pp 279–307

    Google Scholar 

  • Ruprecht E (2006) Successfully recovered grassland: a promising example from Romanian old-fields. Restoration Ecology 14:473–480

    Article  Google Scholar 

  • SAS Institute Inc (1990) SAS/Stat user’s guide, 4th edn. SAS Institute, Inc, North Carolina, USA, pp 120–121

    Google Scholar 

  • Stadler J, Trefflich A, Brandl R, Klotz S (2006) Spontaneous regeneration of dry grasslands on set-aside fields. Biodiversity and Conservation: online November 18

  • Tutin TG et al (1964–1993) Flora Europaea, vols 1–5 & vol 1, 2nd edn. Cambridge University Press, Cambridge, UK

  • Venables WN, Ripley BD (1997) Modern applied statistics with S-Plus. Springer Verlag, New York, USA

    Google Scholar 

  • Wells TCE, Sheail J, Ball DF, Ward LK (1976) Ecological studies on the Porton ranges relationships between vegetation, soils and land-use history. Journal of Ecology 64:589–626

    Article  CAS  Google Scholar 

  • Westhoff V (1983) Man’s attitude towards vegetation. In: Holzner W, Werger MJA, Ikusima I (eds) Man’s impact on vegetation. Geobotany 5. Dr. W Junk Publishers, The Hague, Holland, pp 7–21

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, London, UK

    Google Scholar 

  • Zurbrügg C, Frank T (2006) Factors influencing bug diversity (Insecta: Heteroptera) in semi-natural habitats. Biodiversity and Conservation 15:275–294

    Article  Google Scholar 

References for Appendix A

  • Aude E, Hansen DN, Møller PF, Riis-Nielsen T (2002) Naturnær skovrejsning - et bæredygtigt alternativ? NERI Technical Report no. 389. National Environmental Research Institute, Roskilde, Denmark, pp 1–47

    Google Scholar 

  • Bruun HH, Ejrnæs R (1993) Data from M.Sc.-thesis in biology. University of Copenhagen, Unpublished

  • DANVEG (2002) A database of published and unpublished accounts of terrestrial vegetation in Denmark. Accessible at: http://www.danveg.dk

  • Degn HJ Data from ongoing monitoring of succession at Ørre Hede, Western Jutland, Denmark, Unpublished

  • Ferdinandsen C (1918) Undersøgelser over danske ukrudsformationer paa mineraljorder. Gyldendal, Copenhagen, Denmark

    Google Scholar 

  • Frandsen EL Data from ongoing Ph.D.-study. University of Roskilde, Denmark, Unpublished

  • Frederiksborg Amt (2001) Data from an inventory of abandoned fields in Jægerspris Skydeterræn. Frederiksborg Amt, Denmark, Unpublished

  • Gregersen S, de Muckadell US (2003) Data from M.Sc.-study, University of Copenhagen, Denmark, Unpublished

  • Holst J (1987) En undersøgelse af vegetation og flora på opgivne tørre, sandede landbrugsarealer på Djursland. Teknikerrapport nr. 17, Skov- og Naturstyrelsen, Copenhagen, Denmark, pp 1–184

    Google Scholar 

  • Jessen K (1968) Flora og vegetation på reservatet Vorsø i Horsens Fjord. Botanisk Tidsskrift 63:1–201

    Google Scholar 

  • Mogensen B (1994) Data from M.Sc.-thesis, Botanical Institute, University of Copenhagen, Denmark, Unpublished

  • Wiinstedt K (1938) Vegetationen paa Vorsø i Horsens Fjord. Botanisk Tidsskrift 44:260–306

    Google Scholar 

Download references

Acknowledgments

Odd Stabbetorp and Harald Bratli are acknowledged for valuable discussions during model development. This research was funded primarily by Nordic Council of Ministers and a grant to the first author from the Danish Research Councils. Fondazione Aage V. Jensen is thanked for a peaceful place to finish the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Ejrnæs.

Additional information

Nomenclature: Species names follow Flora Europaea (Tutin and others 1964–1993).

Appendices

Appendix A

A summary of included studies. Year of inventory and number of samples in the three classes is shown

Data source

Year(s) of inventory

Grassland samples

Heathland samples

Abandoned field samples

DANVEG, grassland data

1945–1994

614

  

DANVEG, heathland data

1910–2000

 

904

 

DANVEG, abandoned fields

1930–2000

  

207

Bruun and Ejrnæs (Unpublished)

1992

  

21

Holst (1987)

1986

  

69

Ferdinandsen (1918)

1913

2

 

53

Gregersen and de Muckadell (Unpublished)

2000

  

51

Frandsen (Unpublished)

1999

  

48

Aude and others (2002)

2000

3

 

36

Degn (Unpublished)

1982–2001

  

19

Mogensen (Unpublished)

1993

  

13

Frederiksborg Amt (Unpublished)

1999–2001

1

 

9

Jessen (1968) incl. data from Wiinstedt (1938)

1933–1960

  

7

Appendix B

The development in use of fertilizers in Danish agriculture during the 20th century. The light blue line shows the amount of organic fertilizer (manure), the dark blue line the amount of artificial fertilizer. Both are quantified as kilotons of nitrogen. The three periods used for the meta-analysis is indicated on the graph. From: Anon 2000. Miljøvurdering af finanslovsforslaget for 2001. Finansministeriet. (In Danish).

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ejrnæs, R., Liira, J., Poulsen, R.S. et al. When Has an Abandoned Field Become a Semi-Natural Grassland or Heathland?. Environmental Management 42, 707–716 (2008). https://doi.org/10.1007/s00267-008-9183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-008-9183-6

Keywords

Navigation