Skip to main content

Advertisement

Log in

Multiple Interactive Pollutants in Water Quality Trading

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Efficient environmental management calls for the consideration of multiple pollutants, for which two main types of transferable discharge permit (TDP) program have been described: separate permits that manage each pollutant individually in separate markets, with each permit based on the quantity of the pollutant or its environmental effects, and weighted-sum permits that aggregate several pollutants as a single commodity to be traded in a single market. In this paper, we perform a mathematical analysis of TDP programs for multiple pollutants that jointly affect the environment (i.e., interactive pollutants) and demonstrate the practicality of this approach for cost-efficient maintenance of river water quality. For interactive pollutants, the relative weighting factors are functions of the water quality impacts, marginal damage function, and marginal treatment costs at optimality. We derive the optimal set of weighting factors required by this approach for important scenarios for multiple interactive pollutants and propose using an analytical elasticity of substitution function to estimate damage functions for these scenarios. We evaluate the applicability of this approach using a hypothetical example that considers two interactive pollutants. We compare the weighted-sum permit approach for interactive pollutants with individual permit systems and TDP programs for multiple additive pollutants. We conclude by discussing practical considerations and implementation issues that result from the application of weighted-sum permit programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baumol WJ, Oates WE (1971) The use of standards and prices for protection of environment. Swedish Journal of Economics 73:42–54

    Article  Google Scholar 

  • Beavis B, Walker M (1979) Interactive pollutants and joint abatement costs: achieving water quality standards with effluent charges. Journal of Environmental Economics and Management 6:275–286

    Article  Google Scholar 

  • Boyd J (2000) The new face of the clean water act: a critical review of the EPA’s new TMDL rules. Duke Environmental Law and Policy Forum 11(1):39–87

    Google Scholar 

  • Boyd J, Burtraw D, Krupnick A, McConnel V, Newell RG, Palmer K, Sanchirico JN, Walls M (2003) Trading cases: is trading credits in created markets a better way to reduce pollution and protect natural resources? Environmental Science and Technology 37(111):217–233

    Google Scholar 

  • Brill ED, Eheart JW, Kshirsagar SR, Lence BJ (1984) Water quality impacts of biochemical oxygen demand under transferable discharge permit programs. Water Resources Research 20:445–455

    Article  CAS  Google Scholar 

  • Brown VM (1968) The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Water Research 2:723–733

    Article  CAS  Google Scholar 

  • Chiang AC (1984) Fundamental methods of mathematical economics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Crocker TD (1966) Structuring of atmospheric pollution control systems. In: Wolozin H (ed) The Economics of Air Pollution. W. W. Norton, New York

  • Debertin DL (1986) Agricultural Production Economics. Macmillan, New York

    Google Scholar 

  • Eheart JW, Ng TL (2004) Role of effluent permit trading in total maximum daily load programs: overview and uncertainty and reliability implications. Journal of Environmental Engineering 130(6):615–621. doi: 10.1061/(ASCE)0733-9372(2004)130:6(615)

    Google Scholar 

  • Elofsson K (2003) Control strategies for interactive water pollutants. Presented at the 7th International Conference on Diffuse Pollution & Basin Management, University College Dublin, Dublin, August 17–22; 2:14–2:19

  • Endres A (1986) Charges, permit and pollution interactions. Eastern Economic Journal XII(3):327–336

    Google Scholar 

  • EPA (2003) Final water quality trading policy. Office of Water-Water Quality Trading Policy, U.S. Environmental Protection Agency, Washington, DC. January 13

  • EPA (2006) Implementing water quality trading at the watershed scale. Documents compiled during the preconference workshop at the 2nd National Water Quality Trading Conference, May 23–35, Pittsburgh, PA. U.S. Environmental Protection Agency, Washington, DC

  • Førsund FR, Nævdal E (1998) Efficiency gains under exchange-rate emission trading, Environmental Resource Economics 12:403–423

    Google Scholar 

  • Horan RD, Lupi F (2005) Tradeable risk permits to prevent future introductions of invasive alien species into the Great Lakes. Ecological Economics 52:289–304

    Google Scholar 

  • Hung MF, Shaw D (2005) A trading-ratio system for trading water pollution discharge permits. Journal of Environmental Economics and Management 49:83–102

    Article  Google Scholar 

  • Krupnick AJ, Oates WE, Van De Verg E (1983) On marketable air-pollution permits: the case for a system of pollution offsets. Journal of Environmental Economics and Management 10:233–247

    Article  Google Scholar 

  • Lence BJ (1991) Weighted sum transferable discharge permit programs for control of multiple pollutants. Water Resources Research 27(12):3019–3027

    Article  Google Scholar 

  • Lence BJ, Eheart JW, Brill ED (1988) Cost efficiency of transferable discharge permit markets for control of multiple pollutants. Water Resources Research 24(7):897–905

    Article  Google Scholar 

  • Malik AS (1990) Markets for pollution control when firms are noncompliant. Journal of Environmental Economics and Management 18:97–106

    Article  Google Scholar 

  • McGartland AM, Oates WE (1985) Marketable permits for the prevention of environmental deterioration. Journal of Environmental Economics and Management 12:207–228

    Article  Google Scholar 

  • Montgomery WD (1972) Market in licenses and efficient pollution control programs. Journal of Economic Theory 5:395–418

    Article  Google Scholar 

  • Moslener U, Requate T (2005) Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes. Economics Working Paper. Department of Economics, University of Kiel, Christian-Albrechts-University, Kiel

  • Ng TL, Eheart JW (2005) Effects of discharge permit trading on water quality reliability. Journal of Water Resources Planning and Management 131(2):81–88. doi: 10.1061/(ASCE)0733-9496(2002)131:2(81)

    Google Scholar 

  • Nishizawa E (2003) Effluent trading for water quality management: concept and application to the Chesapeake Bay watershed. Marine Pollution Bulletin 47:169–174

    Article  CAS  Google Scholar 

  • Reilly J, Prinn R, Harnisch J, Fitzmaurice J, Jacoby H, Kicklighter D, Melillo J, Stone P, Sokolov A, Wang C (1999) Multi-gas assessment of the Kyoto Protocol. Nature 401:549–555

    Article  CAS  Google Scholar 

  • Repetto R (1987) The policy implications of nonconvex environmental damages: a smog control case study. Journal of Environmental Economics and Management 14:13–29

    Article  Google Scholar 

  • Sarang A, Baradaran M, Shamsai A, Lence BJ (2006) System dynamics methodology for addressing urban water adaptive management in Tehran. Presented at Adaptive Management of Water Resources, Missoula, Montana, June 26–28

  • Schmieman EC, Ireland ECV, Hordijk L (2002) Dynamic efficiency with multi-pollutants and multi-targets. Environmental and Resource Economics 23:133–148

    Article  Google Scholar 

  • Sprague JB (1970) Measurement of pollutant toxicity to fish. II. Utilizing and applying bioassay results. Water Resources 4:3–32

    CAS  Google Scholar 

  • Tietenberg TH (1974) Derived decision rules for pollution control in a general equilibrium space economy. Journal of Environmental Economics and Management 1(1):3–16

    Article  Google Scholar 

  • Tietenberg TH (1980) Transferable discharge permits and the control of stationary source air pollution: a survey and synthesis. Land Economics 56(4):391–414

    Article  Google Scholar 

  • Tietenberg TH (1985) Emissions trading: an exercise in reforming pollution policy. Resources for the Future, Washington, DC

  • Ungern-Sternberg TV (1987) Environmental protection with several pollutants: on the division of labor between natural scientists and economists. Journal of the Institute of Theoretical Economics 143:555–567

    Google Scholar 

  • Weber ML (2001) Markets for water rights under environmental constraints. Journal of Environmental Economics and Management 42:53–64. (doi:10.1006/jeem.1149.2000)

    Google Scholar 

  • Wulff F (2000) Impacts of changed nutrient loads on the Baltic Sea. In: Gren I-M, Turner RK, Wulff F (eds) Managing a Sea—The Ecological Economics of the Baltic. Earthscan, London, pp 57–65

  • Xepapadeas AP (1991) Environmental policy under imperfect information: incentives and moral hazard. Journal of Environmental Economics and Management 20:113–126

    Article  Google Scholar 

  • Zylicz T (1994) Improving the environment through permit trading: the limits to a market approach. In: Ireland ECV (ed) International Environmental Economics: Theories, Models and Application to Climate Change, International Trade and Acidification. Elsevier, New York, pp 283–306

Download references

Acknowledgments

A. Sarang and A. Shamsai express great thanks to their coauthor, Professor Barbara J. Lence, who provided an excellent opportunity for the corresponding author and inspired him with her thoughtful suggestions to research water quality trading programs during his stay at the University of British Columbia in 2005–2006. We also acknowledge the remarkable support provided by the Sharif University of Technology (SUT) and financial support from the Science, Research and Technology Ministry of Iran. Finally, we thank the anonymous reviewers for their insightful comments, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Sarang.

Appendices

Appendix 1 Kuhn-Tucker Conditions for the General Least-Cost Model

By introducing the multipliers λ ir and ϕ r for the constraints in Eqs. 2 and 3, respectively, we can create the following Lagrangian function:

$$ L=\sum\limits_{j=1}^m {C_j (e_{1j},\ldots,e_{nj})}+\sum\limits_{i=1}^{n-1} {\sum\limits_{r=1}^k {\lambda _{ir} \left(\sum\limits_{j=1}^m {a_{ij}^r e_{ij} } -\overline {S_{ir} } \right)+\sum\limits_{r=1}^k {\lambda _{nr} (\sum\limits_{j=1}^m {\sum\limits_{i=1}^n {b_{ij}^r e_{ij} } } -} } } \overline {S_{nr}})+\\ \sum\limits_{r=1}^k {\phi _r \left[ {f_r (\sum\limits_{j=1}^m {a_{1j}^r e_{1j},..,\sum\limits_{j=1}^m {a_{n-1j}^r e_{n-1j}, \sum\limits_{j=1}^m {\sum\limits_{i=1}^n {b_{ij}^r e_{ij} } } )-\overline {D_r } } } } \right]} $$
(A1-1)

Note that Eq. 4 in the text is an appropriate nonnegativity condition that we adopted to ensure that the emissions cannot be less than zero. Therefore, accounting for nonnegativity conditions in Eq. A1-1 is not necessary because under Kuhn-Tucker optimality conditions, the Lagrange multiplier cannot be negative. If the Lagrange multiplier is nonnegative, then we know that the associated constraint is binding under these conditions (see, e.g., Chiang 1984).

If f r is a differentiable and concave function, the following Kuhn-Tucker conditions are necessary and sufficient for an optimal solution:

$$ \frac{\partial L}{\partial e_{ij} }=\frac{\partial C_j (e_{1j}, \ldots,e_{nj} )}{\partial e_{ij} }+\sum\limits_{r=1}^k {\lambda _{ir} a_{ij}^r } +\sum\limits_{r=1}^k {\lambda _{nr} b_{ij}^r } +\sum\limits_{r=1}^k {\phi _r \left[ {\frac{\partial f_r }{\partial S_{ir} }a_{ij}^r +\frac{\partial f_r }{\partial S_{nr} }b_{ij}^r } \right]} \ge 0\,\&\,e_{ij} \ge 0 \quad i=\left\{ {1,\ldots,n-1} \right\},\,j=\left\{ {1,\ldots,m} \right\} $$
(A1-2)

Then

$$ \sum\limits_{i=1}^{n-1} {\sum\limits_{j=1}^m {e_{ij}}} \left(\frac{\partial C_j (e_{1j}, \ldots,e_{nj} )}{\partial e_{ij} }+\sum\limits_{r=1}^k {\lambda _{ir} a_{ij}^r } +\sum\limits_{r=1}^k {\lambda _{nr} b_{ij}^r } +\sum\limits_{r=1}^k {\phi _r \left[ {\frac{\partial f_r }{\partial S_{ir} }a_{ij}^r +\frac{\partial f_r }{\partial S_{nr} }b_{ij}^r } \right]}\right)=0 $$
(A1-3)

Here we have made some minor simplifications. Given Kuhn-Tucker conditions, the product of the multiplier and the constraint should equal 0 for all i and r, not just for the sum over all i and r. We have condensed the required equations to reduce the length of the paper, but this does not change our results. Based on this explanation, Eqs. A1-3, A1-5, A1-7, A1-9, and A1-11 are derived from the desired Lagrangian function (A1-1).

$$ \frac{\partial L}{\partial e_{nj} }=\frac{\partial C_j (e_{1j},\ldots,e_{nj} )}{\partial e_{nj} }+\sum\limits_{r=1}^k {\lambda _{nr} b_{nj}^r } +\sum\limits_{r=1}^k {\phi _r \frac{\partial f_r }{\partial S_{nr} }b_{nj}^r } \ge 0\,\&\, e_{nj} \ge 0: \quad j=\left\{ {1,\ldots,m} \right\} $$
(A1-4)

Then

$$ \sum\limits_{j=1}^m {e_{nj}} \left(\frac{\partial C_j (e_{1j},\ldots,e_{nj} )}{\partial e_{nj} }+\sum\limits_{r=1}^k {\lambda _{nr} b_{nj}^r } +\sum\limits_{r=1}^k {\phi _r \frac{\partial f_r }{\partial S_{nr} }b_{nj}^r }\right)=0 $$
(A1-5)
$$ \frac{\partial L}{\partial \lambda _{ir} }=-\left(\sum\limits_{j=1}^m {a_{ij}^r e_{ij} } -\overline {S_{ir} } \right)\ge 0\,\&\,\lambda _{ir} \ge 0 \quad i=\left\{ {1,\ldots,n-1} \right\}, r=\left\{ {1,\ldots,k} \right\} $$
(A1-6)
$$ \sum\limits_{i=1}^{n-1} {\sum\limits_{r=1}^k {\lambda _{ir} \left(\overline {S_{ir} } -\sum\limits_{j=1}^m {a_{ij}^r e_{ij} }\right)} } =0 $$
(A1-7)
$$ \frac{\partial L}{\partial \lambda _{nr} }=-\left(\sum\limits_{i=1}^n {\sum\limits_{j=1}^m {b_{ij}^r e_{ij} } -\overline {S_{nr}}}\right)L\ge 0\,\&\,\lambda _{nr} \ge 0 \quad r=\left\{ {1,\ldots,k} \right\} $$
(A1-8)
$$ \sum\limits_{r=1}^k {\lambda _{nr} \left(\overline {S_{nr} } -\sum\limits_{i=1}^n {\sum\limits_{j=1}^m {b_{ij}^r e_{ij}}}\right)}=0 $$
(A1-9)
$$\frac{\partial L}{\partial \phi _r }=-\left(f_r \left(\sum\limits_{j=1}^ma_{1j}^r e_{1j},..,\sum\limits_{j=1}^m a_{n-1j}^r e_{n-1j},\sum\limits_{j=1}^m \sum\limits_{i=1}^n {b_{ij}^re_{ij}}\right)-\overline {D_r } \right)\ge 0\,\&\,\phi _r \ge 0\quad r=\left\{ {1,\ldots,k} \right\}$$
(A1-10)
$$\sum\limits_{r=1}^k {\phi _r \left(\overline {D_r } -f_r\left(\sum\limits_{j=1}^m a_{1j}^r e_{1j} ,..,\sum\limits_{j=1}^m{a_{n-1j}^r e_{n-1j} ,\sum\limits_{j=1}^m{\sum\limits_{i=1}^n{b_{ij}^r e_{ij}}}}\right)\right)}=0$$
(A1-11)

Appendix 2 Kuhn-Tucker Conditions for General Weighted-Sum Permit Markets

Lence (1991) showed that for multiple pollutants, the solution for the model based on Eqs. 1, 7, and 4 is the same as the solution for an individual polluter seeking to minimize the following model:

$$ \hbox{Minimize}: C_j (e_{1j} ,\ldots,e_{nj} )+p(l_j -l_j^0 ) $$
(A2-1)
$$ \hbox{Subject to}: l_j -\sum\limits_{i=1}^n {w_{ij} e_{ij} } \ge 0 $$
(A2-2)
$$ e_{ij} \ge 0 \quad i=\left\{ {1,\ldots,n} \right\} $$
(A2-3)

If the total permit is chosen so that

$$ \sum\limits_{j=1}^m {l_j^0 } =L_{ws}^0 $$
(A2-4)

market equilibrium exists in the permit system if there are nonnegative prices for all pollutants such as p * i , and then the equilibrium levels of e * ij and l * ij solve the polluter’s minimization problem, and the market-clearing conditions are as follows:

$$ \sum\limits_{j=1}^m {(l_{ij}^\ast } -l_{ij}^0 )\le 0 \Rightarrow p_i^\ast \sum\limits_{j=1}^m {(l_{ij}^\ast } -l_{ij}^0 )=0\hbox{ for}\;\forall _i $$
(A2-5)

The optimal discharge matrix, E ws i , defines a permit-constraint joint-cost minimum for shadow price λws≥0 such that

$$L=\sum\limits_{j=1}^n {C_j (e_{1j} ,\ldots,e_{nj})} +\lambda^{ws}\left(\sum\limits_{j=1}^m \sum\limits_{i=1}^n {w_{ij} e_{ij}}-L_{ws}^0\right)$$
(A2-6)
$$ \frac{\partial L}{\partial e_{ij} }=\frac{\partial C_j (e_{1j}^{ws} ,\ldots,e_{nj}^{ws} )}{\partial e_{ij} }+\lambda ^{ws}w_{ij} \ge 0; \quad \sum\limits_{i=1}^n {\sum\limits_{j=1}^m {e_{ij}^{ws} \left[ {\frac{\partial C_j (e_{1j}^{ws} ,\ldots,e_{nj}^{ws} )}{\partial e_{ij} }+\lambda ^{ws}w_{ij} } \right]}}=0 $$
(A2-7)
$$ \frac{\partial L}{\partial \lambda ^{ws}}=L_{ws}^0-\sum\limits_{j=1}^m {\sum\limits_{i=1}^n {w_{ij} e_{ij}^{ws}{}_{ij}}}0; \quad \lambda ^{ws}\left[ {L_{ws}^0 -\sum\limits_{j=1}^m {\sum\limits_{i=1}^n {w_{ij} e_{ij}^{ws} } } } \right]\ge 0 $$
(A2-8)

Appendix 3 Kuhn-Tucker Conditions for the Least-Cost Model in Scenario 1: Multiple Interactive Pollutants with Only an Interaction Function

By using the same Kuhn-Tucker conditions as in Appendix 2 and defining an efficient emission matrix for multiple interactive pollutants (denoted “imp”), E imp i (E imp i = (e imp i1 ,...,e imp ij ,...,e imp im )), and the relevant Lagrangian multiplier, ϕ imp r , we obtain the following relationships:

$$L=\sum\limits_{j=1}^J {C_j (e_{1j}^{imp} ,\ldots,e_{nj}^{imp})}+\sum\limits_{r=1}^k \phi _r^{imp} \left[{f_r \left(\sum\limits_{j=1}^ma_{1j}^r e_{1j}^{imp} ,..,\sum\limits_{j=1}^m a_{nj}^re_{nj}^{imp}\right)-\overline D_r} \right]$$
(A3-1)
$$ \frac{\partial L}{\partial e_{ij} }=\frac{\partial C_j (e_{1j}^{imp} ,\ldots,e_{nj}^{imp} )}{\partial e_{ij} }+\sum\limits_{r=1}^k {\phi _r^{imp} \frac{\partial f_r }{\partial S_{ir} }a_{ij}^r } \ge 0\;\&\;e_{ij}^{imp} \ge 0 \quad i=\left\{ {1,\ldots,n} \right\}, j=\left\{ {1,\ldots,m} \right\} $$
(A3-2)

Then

$$\sum\limits_{i=1}^n \sum\limits_{j=1}^m e_{ij}^{imp}\left(\frac{\partial C_j (e_{1j}^{imp} ,\ldots,e_{nj}^{imp})}{\partial e_{ij} }+\sum\limits_{r=1}^k \phi _r^{imp}\frac{\partial f_r}{\partial S_{ir} }a_{ij}^r\right)=0$$
(A3-3)

We can also rewrite the above relationship as follows:

$$\sum\limits_{j=1}^m>e_{ij}^{imp}\left(\frac{\partial C_j (e_{1j}^{imp}>,\ldots,e_{nj}^{imp})}{\partial e_{ij}}+\sum\limits_{r=1}^k {\phi >_r^{imp} \frac{\partial f_r}{\partial >S_{ir}}a_{ij}^r}\right)=0\,\hbox{ for }\,i=\left\{{1,\ldots,n} >\right\}$$
(A3-4)
$$\frac{\partial L}{\partial \phi >_r}=-(f_r \left(\sum\limits_{j=1}^ma_{1j}^r >e_{1j}^{imp},..,\sum\limits_{j=1}^m a_{nj}^r e_{nj}^{imp} )-\overline>D_r\right)\ge 0\;\&\;\phi _r \ge 0 \quad r=\left\{ {1,\ldots,k}>\right\}$$
(A3-5)
$$\sum\limits_{r=1}^k {\phi _r^{imp} \left(\overline D _r -f_r\left(\sum\limits_{j=1}^m a_{1j}^r e_{1j}^{imp},..,\sum\limits_{j=1}^ma_{nj}^r e_{nj}^{imp}\right)\right)}=0$$
(A3-6)

Appendix 4 Kuhn-Tucker Conditions for the Least-Cost Model in Scenario 2: Multiple Interactive Pollutants Model in Scenario 1 with Individual Pollutant Constraints

By using the same Kuhn-Tucker conditions as in Appendix 3 and defining an efficient emission matrix for multiple interactive pollutants (denoted “ imp”), E imp i (E imp i = (e imp i1 ,...,e imp ij ,...,e imp im )), and the relevant Lagrangian multiplier, ϕ imp r , as well as a multiplier for individual constraints for the form in Eq. 2, we obtain the following relationships for scenario 2:

$$L=\sum\limits_{j=1}^J {C_j (e_{1j}^{imp} ,\ldots,e_{nj}^{imp})}+\sum\limits_{i=1}^n {\sum\limits_{r=1}^k {\lambda _{ir}^{imp}\left(\sum\limits_{j=1}^m {a_{ij}^r e_{ij}^{imp}}-\overline S_{ir}\right)+}} \sum\limits_{r=1}^k \phi _r^{imp} \left[f_r\left(\sum\limits_{j=1}^m a_{1j}^r e_{1j}^{imp},..,\sum\limits_{j=1}^ma_{nj}^r e_{nj}^{imp}\right)-\overline D _r\right]$$
(A4-1)
$$ \frac{\partial L}{\partial e_{ij} }=\frac{\partial C_j (e_{1j}^{imp} ,\ldots,e_{nj}^{imp} )}{\partial e_{ij} }+\sum\limits_{r=1}^k {\lambda _{ir}^{imp} a_{ij}^r } +\sum\limits_{r=1}^k {\phi _r^{imp} \frac{\partial f_r }{\partial S_{ir} }a_{ij}^r } \ge 0\;\&\;e_{ij}^{imp} \ge 0 \quad i=\left\{ {1,\ldots,n} \right\}, j=\left\{ {1,\ldots,m} \right\} $$
(A4-2)

Then

$$\sum\limits_{i=1}^n \sum\limits_{j=1}^me_{ij}^{imp}\left(\frac{\partial C_j (e_{1j}^{imp},\ldots,e_{nj}^{imp})}{\partial e_{ij} }\,+\,\sum\limits_{r=1}^k{\lambda_{ir}^{imp} a_{ij}^r}\,+\,\sum\limits_{r=1}^k \phi _r^{imp}\frac{\partial f_r}{\partial S_{ir}}a_{ij}^r\right)=0$$
(A4-3)

We can also rewrite the above relationships in condensed form as follows:

$$\sum\limits_{j=1}^m>e_{ij}^{imp} \left(\frac{\partial C_j(e_{1j}^{imp}>,\ldots,e_{nj}^{imp})}{\partial e_{ij}}+\sum\limits_{r=1}^k{\lambda_{ir}>^{imp} a_{ij}^r}+\sum\limits_{r=1}^k \phi_r^{imp} \frac{\partial > f_r}{\partial S_{ir}}a_{ij}^r \right)=0\hbox{ for }i=\left\{{1,\ldots,n}>\right\}$$
(A4-4)
$$\frac{\partial L}{\partial \phi _r }=-\left(f_r\left(\sum\limits_{j=1}^m a_{1j}^r e_{1j}^{imp},..,\sum\limits_{j=1}^m a_{nj}^re_{nj}^{imp}\right)-L_{dr}^0\right)\ge 0\;\&\;\phi _r^{imp} \ge0 \quad r=\left\{{1,\ldots,k} \right\}$$
(A4-5)
$$ \sum\limits_{r=1}^k {\phi _r^{imp}\left(\overline D _r -f_r \left(\sum\limits_{j=1}^m {a_{1j}^re_{1j}^{imp}} ,..,\sum\limits_{j=1}^m {a_{nj}^r e_{nj}^{imp}}\right)\right)=0} $$
(A4-6)
$$\frac{\partial L}{\partial \lambda _{ir} }=-\left(\sum\limits_{j=1}^m{a_{ij}^r e_{ij}^{imp} } -\overline S _{ir}\right)\ge 0\;\&\;\lambda_{ir}^{imp} \ge 0 \quad i=\left\{ {1,\ldots,n} \right\}, r=\left\{{1,\ldots,k} \right\}$$
(A4-7)
$$\sum\limits_{i=1}^n {\sum\limits_{r=1}^k {\lambda _{ir}^{imp}\left(\overline S _{ir} -\sum\limits_{j=1}^m {a_{ij}^r e_{ij}^{imp}}\right)}} =0$$
(A4-8)

Appendix 5 Notation

i = {1,..., n}

Number of different pollutants

j = {1,..., m}

Number of polluters

r = {1,..., k}

Number of checkpoints in the body of water

q = {1,...,p}

Number of products manufactured by the polluter

a r ij

Water quality impact factor indicating the contribution of 1 unit of pollutant i emitted by polluter j to the concentration of pollutant i at checkpoint r (1/l)

b r ij

Water quality impact factor indicating the contribution of 1 unit of pollutant i emitted by polluter j to the concentration of a water quality indicator that is indirectly affected by pollutant i (e.g., the reduction in dissolved oxygen content) at checkpoint r (1/l)

S ir

Concentration of pollutant i at checkpoint r, mg/L

e ij

Emission of pollutant i by polluter j, mg (pollution load)

\(\overline S _{ir}\)

Target level for the concentration of pollutant i at checkpoint r, mg/L

f r

Damage function at checkpoint r

\(\overline D _r \)

Target damage level at checkpoint r

C j

Total pollution-control cost function for polluter j

es r

Elasticity of substitution at checkpoint r

ρ r

A parameter related to the elasticity of substitution

N

Nitrogen pollutant

P

Phosphorus pollutant

Al r

Algal level, in terms of either mass of algae or cl a

B r

A parameter of the damage function at checkpoint r

μ r

A parameter of the damage function at checkpoint r

\(\overline {Al} _r \)

Target algal level (production function) at checkpoint r

L

Lagrangian function

ϕ r , γ, and λ ir

Lagrangian multipliers for different constraints

l ij

Pollution permit issued by the regulator for pollutant i of polluter j

l 0 ij

Initial pollution permit issued by the regulator for pollutant i of polluter j

L 0 i

Total initial pollution permits for pollutant i

L 0 ws

The number of initial weighted-sum permits issued by the regulator

w ij

Weighting factor for pollutant i emitted by polluter j

**

Indicates the optimal values for multiple polluters

*

Indicates the optimal values for a single polluter

e ws ij

Optimal emission of pollutant i emitted by polluter j in the weighting system

G j

Production cost function for the jth multiproduct polluter

e imp ij

Optimal emission of multiple interactive pollutant i emitted by polluter j in scenarios 1 and 2

p i

Market price of pollutant i

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarang, A., Lence, B.J. & Shamsai, A. Multiple Interactive Pollutants in Water Quality Trading. Environmental Management 42, 620–646 (2008). https://doi.org/10.1007/s00267-008-9141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-008-9141-3

Keywords