Advertisement

Environmental Management

, 42:279 | Cite as

Morphodynamic Effects on the Habitat of Juvenile Cyprinids (Chondrostoma nasus) in a Restored Austrian Lowland River

  • Christoph Hauer
  • Günther Unfer
  • Stefan Schmutz
  • Helmut Habersack
Article

Abstract

At the Sulm River, an Austrian lowland river, an ecologically orientated flood protection project was carried out from 1998–2000. Habitat modeling over a subsequent 3-year monitoring program (2001–2003) helped assess the effects of river bed embankment and of initiating a new meander by constructing a side channel and allowing self-developing side erosion. Hydrodynamic and physical habitat models were combined with fish-ecological methods. The results show a strong influence of riverbed dynamics on the habitat quality and quantity for the juvenile age classes (0+, 1+, 2+) of nase (Chondrostoma nasus), a key fish species of the Sulm River. The morphological conditions modified by floods changed significantly and decreased the amount of weighted usable areas. The primary factor was river bed aggradation, especially along the inner bend of the meander. This was a consequence of the reduced sediment transport capacity due to channel widening in the modeling area. The higher flow velocities and shallower depths, combined with the steeper bank angle, reduced the Weighted Useable Areas (WUAs) of habitats for juvenile nase. The modeling results were evaluated by combining results of mesohabitat-fishing surveys and habitat quality assessments. Both, the modeling and the fishing results demonstrated a reduced suitability of the habitats after the morphological modifications, but the situation was still improved compared to the pre-restoration conditions at the Sulm River.

Keywords

Habitat modeling Restoration measures River monitoring Chondrostoma nasus Aggradation Juvenile fish habitats 

Notes

Acknowledgments

The authors wish to thank DI Karoline Maierhofer and DI Novak Irene for supportive work, and also DI Rudolf Hornich from the Regional Government of Styria for funding the monitoring program.

References

  1. Balon EK (1984) Reflections on some decisive events in the early life of fishes. Transaction of the American Fisheries Society 113:178–185CrossRefGoogle Scholar
  2. Balon EK (1985) Early life histories of fishes: new developmental, ecological and evolutionary perspectives. Development and environmental biology of fishes, vol. 5. Dr Junk Publishers, DordrechtGoogle Scholar
  3. Baras E, Cherry B (1990) Seasonal activities of female barbel, Barbus barbus (L.) in the River Ourthe (Southern Belgium), as relevant by radio tracking. Aquatic Living Resources 3:283–294CrossRefGoogle Scholar
  4. Bartl E, Keckeis H (2004) Growth and mortality of introduced fish larvae in a newly restored urban river. Journal of Fish Biology 64:1577–1592CrossRefGoogle Scholar
  5. Beard TD, Carline RF (1991) Influence of spawning and other stream habitat features on spatial variability of brown trout. Transaction of the American Fisheries Society 120:711–722CrossRefGoogle Scholar
  6. Blackburn J, Steffler P (2002) River2D Two-Dimensional Depth Averaged Model of River Hydrodynamics and Fish Habitat. River2D Tutorials, University of AlbertaGoogle Scholar
  7. Bovee KD (1986) Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Biological report 86: 235 pp, US Fish and Wildlife ServiceGoogle Scholar
  8. Bovee KD, Cochnauer T (1977) Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: Fisheries. Instream Flow Information Paper 3. U.S.D.I. Fish. Wildl. Serv., Office of Biol. Serv. FWS/OBS-77/63Google Scholar
  9. Bozek MA, Rahel FJ (1992) Generality of microhabitat suitability models for young Colorado cutthroat trout (Onchorynchus clarki pleuriticus) across sites and among years in Wyoming streams. Canadian Journal of Fisheries and Aquatic Sciences 49:552–564CrossRefGoogle Scholar
  10. Bremset G, Berg OK (1999) Three-dimensional microhabitat use by young pool – dwelling Atlantic salmon and brown trout. Animal Behaviour 58:1047–1059CrossRefGoogle Scholar
  11. Copp GH (1992) Comparative microhabitat use of a cyprinid larvae and juveniles in a lotic floodplain channel. Environmental Biology of Fishes 33:181–193CrossRefGoogle Scholar
  12. Copp GH, Jurajda P (1993) Do small fish move inshore at night? Journal of Fish Biology 43 (Suppl. A):229–241Google Scholar
  13. Dabrowski K, Takashima F, Law YK (1988) Bioenergetic model of planktivorous fish feeding, growth and metabolism: theoretical optimum swimming speed of fish larvae. Journal of Fish Biology 32:443–458CrossRefGoogle Scholar
  14. Dedual M (1990) Biologie et Problémes de Dynamique de Population du Nase (Chondrostoma nasus) dans la Petite Sarine. These du doctorat. Université de FribourgGoogle Scholar
  15. Eklöv AG, Greenberg LA (1998) Effects of artificial instream cover on the density of 0+ brown trout. Fisheries Management and Ecology 5:45–53CrossRefGoogle Scholar
  16. Elliot CRN, Willis DJ, Acreman MC (1996) Application of the physical habitat simulation (PHABSIM) model as an assessment tool for riverine habitat restoration techniques. In M. Leclerc et al (eds) Ecohydraulics 2000, Proceedings of the second IAHR International Symposium on Habitat Hydraulics. Quebec, Canada. Volume B:607–618Google Scholar
  17. Facey DE, Grossmann GD (1990) The metabolic cost of maintaining position for four North American stream fishes: effect of season and velocity. Physiological Zoology 63:757–776Google Scholar
  18. Gard MF (2006) Changes in salmon spawning and rearing habitat associated with river channel restoration. International Journal of River Basin Management 4:201–211Google Scholar
  19. Ghanem A, Steffler P, Hicks F (1996) Two-dimensional hydraulic simulation of physical habitat conditions in flowing streams. Regulated Rivers Research & Management 12:185–200CrossRefGoogle Scholar
  20. Greenberg LA, Svendsen P, Harby A (1996) Availability of microhabitat and their use by brown trout (Salmo trutta) and grayling (Thymallus thymallus) in the river Vojman, Sweden. Regulated Rivers Research & Management 12:287–303CrossRefGoogle Scholar
  21. Grossmann GD, Freeman MC (1987) Microhabitat use in a stream fish assemblage. Journal of Zoology 212:151–176Google Scholar
  22. Habersack H, Hauer C (2004) Flussmorphologisches Monitoring an der Sulm. Arbeitspakete Morphologie und Hochwasserschutz. Studie im Auftrag der Steiermärkischen LandesregierungGoogle Scholar
  23. Harby A, Arnekleiv JV (1994) Biotope improvement analysis in the river Dallaa with the River System Simulator. In Proceedings of the first International Symposium on Habitat Hydraulics. Trondheim, Norway:619–630Google Scholar
  24. Harby A, Babtist M, Dunbar MJ, Schmutz S (2004) State of the art in data sampling, modelling analysis and applications of river habitat modelling. COST Action 626 report, 252 ppGoogle Scholar
  25. Hauer C, Unfer G, Schmutz S, Habersack H (2007) The importance of morphodynamic processes used as spawning grounds during the incubation time of nase (Chondrostoma nasus). Hydrobiologia 579:15–27CrossRefGoogle Scholar
  26. Hederson PA, Holmes RHA, Bamber RN (1988) Size-selective overwintering mortality in the sand smelt, Atherina boyeri Risso, and its role in population regulation. Journal of Fish Biology 33:221–233CrossRefGoogle Scholar
  27. Heggenes J (1988) Effects of short-term flow fluctuations on displacement of, and habitat use by, brown trout in a small stream. Transaction of the American Fisheries Society 117:336–344CrossRefGoogle Scholar
  28. Hirzinger V, Keckeis H, Nemeschalk HL, Schiemer F (2004) The importance of inshore areas for adult fish distribution along free-flowing section of the Danube, Austria. River Research and Applications 20:137–149CrossRefGoogle Scholar
  29. Hofer K, Kirchhofer A (eds) (1996) Drift, habitat choice and growth of the nase (Chondostroma nasus, Cyprinidae) during early life stages. In Conservation of Endangered Freshwater Fish in Europe pp. 269–278. Bern and Basel: Birkhäuser Verlag BaselGoogle Scholar
  30. Huusko A, Yrjänä T (1996) Effects of instream enhancement structures on brown trout habitat availability in a channelized boreal river: a PHABSIM – approach. In Leclerc M et al (eds) Ecohydraulics 2000, Proceedings of the second IAHR International Symposium on Habitat Hydraulics. Quebec, Canada. Volume B:619–630Google Scholar
  31. Illies B, Botosaneanu L (1963) Problémes et methodes de la classification et de la zonation ecologique des eaux courantes considerées surtout du point de vue faunistique. Internationale Vereinigung für theoretische und angewandte Limnologie 12:1–57Google Scholar
  32. Jorde K (1999) Das Simulationsmodell CASIMIR als Hilfsmittel zur Festlegung ökologisch begründeter Mindestwasserregelung. Tagungsband Problemkreis Pflichtwasserabgabe, 21–23 Juni, Graz, Schriftreihe EuronaturGoogle Scholar
  33. Kaufmann R (1990) Respiratory cost of swimming in larval and juvenile cyprinids. Journal of Experimental Biology 15:343–366Google Scholar
  34. Keckeis H, Winkler G, Flore L, Reckendorfer W, Schiemer F (1997) Spatial and seasonal characteristics of 0+ fish nursery habitats of nase, Chondrostoma nasus in the River Danube. Austria Folia Zoologica 46:133–150Google Scholar
  35. Keckeis H, Kamler E, Bauer-Nemeschkal E, Schneeweiss K (2001) Survival development and food energy partitioning of nase larvae and early juveniles at different temperatures. Journal of Fish Biology 59:763–808CrossRefGoogle Scholar
  36. Kerle F, Zöllner F, Schneider M, Böhmer J, Kappus B, Babtist MJ (2000) Modelling of long-term habitat changes in restored secondary floodplain channels of the river Rhine. Conference Proceedings of the fourth Ecohydraulics Symposium, 3–8 March 2002, Cape Town, South AfricaGoogle Scholar
  37. Kondolf GM, Sale MJ (1985) Application of historical channel stability analysis to instream flow studies. Publication No. 2527, Environmental Science Division, Oak Ridge National Laboratory, Conference on Small Hydropower and Fisheries, American Fisheries Societa, Bethesda, Md.:184–194Google Scholar
  38. Langler GJ, Smith C (2001) Effects of habitat enhancement on O− group fishes in a lowland river. Regulated Rivers Research & Management 17:677–686CrossRefGoogle Scholar
  39. Leopold LP, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. Freeman, San Francisco, CA, 522 ppGoogle Scholar
  40. Lightfoot GW, Jones N (1979) The relationship between the size of 0+ roach, their swimming capability and their distribution in the river. O´Hara K, Dickson Barr C (eds) In proceedings of the 1st British Freshwater Fisheries Conference, pp. 230–236. Liverpool: Liverpool University PressGoogle Scholar
  41. Mader H, Steidl T, Wimmer R (1996) Klimatologisch-hydrologische Typisierung der österreichischen Fließgewässer. Umweltbundesamt, Monographien, WienGoogle Scholar
  42. Mann RHK (1997) Temporal and spatial variations in the growth of O group roach (Rutilus rutilus) in the River Great Ouse in relation to water temperature and food availability. Regulated Rivers Research & Management 13:277–285CrossRefGoogle Scholar
  43. Mann RHK, Mills CA (1986) Biological and climatic influences on the dace Leucisus leucisus in a southern chalk stream. Annual Report of the Freshwater Biological Association 54:123–136Google Scholar
  44. Melcher A (1999) Biotische Habitatmodellierung im Zuge eines Gewässerbetreuungskonzeptes anhand der Lebensraumansprüche der Nase (Chondrostoma nasus). Diploma thesis. Abteilung für Hydrobiologie. BOKU WienGoogle Scholar
  45. Meng L (1993) Sustainable swimming speeds of stripped bass larvae. American Fisheries Society 122:702–708CrossRefGoogle Scholar
  46. Meyer-Peter E, Müller P (1949) Formulas for bedload transport. International Association of Hydraulic Research. 2nd Meeting. StockholmGoogle Scholar
  47. Milhous RT, Updike MA, Schneider DM (1989) Physical Habitat Simulation System Reference Manual - Version II. Instream Flow Information Paper No.26. US Fish and Wildlife Service Biological Report 89(16). US Fish and Wildlife Service: Fort Collins, COGoogle Scholar
  48. Mills CA, Mann RHK (1985) Environmentally-influenced fluctuations in year class strength and their implications for management. Journal of Fish Biology 27:209–226CrossRefGoogle Scholar
  49. Muhar S, Kainz M, Kaufmann M, Schwarz M (1998) Ausweisung flusstypspezifisch erhaltener Fließgewässer in Österreich. BMLF, WienGoogle Scholar
  50. Mühlbauer M (2002) Fischökologisches Monitoring an den Voralpenflüssen Pielach und Melk im Rahmen eines EU-Life-Projektes mit Schwerpunkt auf die Entwicklung einer Fischfangmethodik zur Absperrung ganzer Flüsse. Master thesis, Institut für Hydrobiologie & Gewässermanagement, BOKU Vienna, pp 197Google Scholar
  51. Nunn AD, Cowx IG, Frear PA, Harvey JP (2003) Is water temperature an adequate predictor of recruitment success in cyprinid fish populations in lowland rivers. Freshwater Biology 48:579–588CrossRefGoogle Scholar
  52. Otto H (1981) Auwälder im Steirischen Mur- und Raabgebiet. Mitteilungen des Institutes für Umweltwissenschaft und Naturschutz Graz 4:69–81Google Scholar
  53. Peter A, Holzer G, Mueller R, Schneider M (2004) Spawning habitat requirements of European grayling (Thymallus thymallus) and modeling of habitat changes in a lake outflow (Aare River) using a 2-dimensional hydraulic habitat model. In Garcia de Jalon D et al (eds) Ecohydraulics 2004, Proceedings of the fifth IAHR International Symposium on Habitat Hydraulics. Madrid, SpainGoogle Scholar
  54. Petts GE (1994) Impounded Rivers Perspectives for Ecological Management. John Wiley and Sons, New York, pp 326Google Scholar
  55. Philippart JC (1987) Démographie, conservation et restauration du barbeau fluviatile, Barbus barbus (Linné) dans la Meuse et ses affluents. Quinze anneees de recherches. Annales de la Societe de Recherches Zoologique Belge 117:46–62Google Scholar
  56. Pokorny B (2000) Untersuchungen zur Drift und Habitatwahl der frühen Entwicklungsstadien der Nase Chondrostoma nasus an der Pielach. Diploma thesis, Abteilung für Hydrobiologie, BOKU WienGoogle Scholar
  57. Power ME (1987) Predator avoidance by grazing fishes in temperate and tropical streams: importance of stream depth and prey size. Kerfoot WC, Sih A (eds) In Predation: Direct and Indirect Impacts on Aquatic Communities. Dartmouth, New Hampshire: University Press of England pp. 333–351Google Scholar
  58. Railsback S (1999) Reducing uncertainties in instream flow studies. Fisheries 24:24–26CrossRefGoogle Scholar
  59. Regional Government of Styria (2001) Hochwasserschutz Sulm – Heimschuh. BroschüreGoogle Scholar
  60. Reichard M, Jurajda P, Smith C (2004) Spatial distribution of drifting cyprinid fishes in a shallow lowland river. Archiv für Hydrobiologie 159:395–407CrossRefGoogle Scholar
  61. Rozas LP, Odum WE (1998) Occupation of submerged aquatic vegetation by fishes – testing the roles of food and refuge. Oecologia 77:101–106CrossRefGoogle Scholar
  62. Salveit SJ, Halleracker JHJ, Arnekleiv V, Harby A (2001) Field experiments on stranding in juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) during rapid flow decreases caused by hydropeaking. Regulated Rivers Research & Management 17:609–622CrossRefGoogle Scholar
  63. Santos JM, Godinho FN, Ferreira MT (2004) Microhabitat use by Iberian nase Chondostroma polylepis and the Iberian chub Squalius carolitertii in three small streams, north-west Portugal. Ecology of Freshwater Fish 13:223–230CrossRefGoogle Scholar
  64. Scheidegger KJ, Bain MB (1995) Larval fish distribution and microhabitat us in free-flowing and regulated rivers. Copeia 1995:125–135Google Scholar
  65. Schiemer F, Keckeis H, Kamler E (2002) The early life history stages of riverine fish: ecophysical and environmental bottlenecks. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology 133:439–449CrossRefGoogle Scholar
  66. Schneider M (2001) Habitat und Abflussmodellierung mit unscharfen Berechnungsansätzen Mitteilungen des Instituts für Wasserbau, Universität Stuttgart, Heft 108Google Scholar
  67. Scruton DA (1996) Evaluation of the construction of artificial fluvial salmonid habitat in a habitat compensation project, Newfoundland, Canada. Regulated Rivers Research & Management 12:171–183CrossRefGoogle Scholar
  68. Scruton DA, Clarke KD, Ollerhead LMN, Perry D, McKinleys RS, Alfredsen K, Harby A (2002) Use of telemetry in the development and application of biological criteria for habitat hydraulic modelling. Hydrobiologia 483:71–82CrossRefGoogle Scholar
  69. Shen Y, Diplas P, Crowder DW (2004) Two dimensional hydraulic modelling: A tool for stream restoration studies. In Garcia de Jalon D et al (eds) Ecohydraulics 2004, Proceedings of the fifth IAHR International Symposium on Habitat Hydraulics. Madrid, Spain. Volume A:381–391Google Scholar
  70. Shields FD, Copeland RR, Klingeman PC, Doyle MW, Simon A (2003) Design for stream restoration. Journal of Hydraulic Engineering 129:575–584CrossRefGoogle Scholar
  71. Shirvell CS (1994) Effect of changes in the streamflow on the microhabitat use and movements of sympatric juvenile coho salmon (Onchorhynchus kisutch) and chinook salmon (O. tshawytscha) in a natural stream. Canadian Journal of Fishery and Aquatic Sciences, 51:1644–1652Google Scholar
  72. Shuler SW, Nehring RP (1993) Using the physical habitat simulation model to evacuate a stream habitat enhancement project. Regulated Rivers Research & Management 4:175–193Google Scholar
  73. Snyder DE (1990) Fish larvae – ecologically distinct organisms. Fish and Wildlife Service Biological Report 90:20–23Google Scholar
  74. Spindler T (1988) Ökologie der Brutfische in der Donau bei Wien. Dissertation, University of Vienna. pp. 119Google Scholar
  75. Thurow RF (1994) Underwater methods for study of salmonids in the Intermountain wast. Gen. Tech. Rep. INT-GTR-307. Odgen, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, pp 28 Google Scholar
  76. Traxler E (2002) Fischökologisches Monitoring an den Voralpenflüssen Pielach und Melk im Rahmen eines EU-Life-Projektes mit Schwerpunkt auf der Altersanalyse von Wanderfischarten. Master thesis, Institut für Hydrobiologie & Gewässermanagement, BOKU Vienna, pp 197Google Scholar
  77. USACE, U.S. Army Corps of Engineers. (1994) Engineering and design – channel stability assessment for flood control project. Rep. No. EM-1110-2-4000, Washington, DCGoogle Scholar
  78. Wheaton JM, Pasternack GB, Merz JE (2004) Use of habitat heterogeneity in salmonid spawning habitat rehabilitation design. In Garcia de Jalon D et al (eds) Ecohydraulics 2004, Proceedings of the fifth IAHR International Symposium on Habitat Hydraulics. Madrid, Spain. Volume B:791–797Google Scholar
  79. Winkler G, Keckeis H, Reckendorfer W, Schiemer F (1997) Temporal and spatial dynamics of O+ Chondrostoma nasus, at the inshore zone of a large river. Folia Zoologica 46:151–168Google Scholar
  80. Young PS, Cech JJ (1994) Optimum exercise conditioning velocity for growth, muscular development and swimming performance in young-of-the-year striped bass (Morone saxatilis). Canadian Journal of Fishery and Aquatic Sciences 51:1519–1527CrossRefGoogle Scholar
  81. Zitek A, Schmutz S, Ploner A (2004a) Fish drift in a Danube sidearm – system: II. Seasonal and diurnal patterns. Journal of Fish Biology 65:1339–1357CrossRefGoogle Scholar
  82. Zitek A, Unfer G, Wiesner C, Fleischanderl D, Jungwirth M, Muhar S (2004b) Evaluierung flussbaulich – ökologischer Maßnahmen an der Sulm. Abschlussbericht – Fischökologisches Monitoring, Institut für Hydrobiologie und Gewässermanagement, BOKU WienGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Christoph Hauer
    • 1
  • Günther Unfer
    • 2
  • Stefan Schmutz
    • 2
  • Helmut Habersack
    • 1
  1. 1.Institute of Water Management, Hydrology and Hydraulic EngineeringBOKU – University of Natural Resources & Applied Life Sciences ViennaViennaAustria
  2. 2.Institute of Hydrobiology and Aquatic Ecosystem ManagementBOKU – University of Natural Resources & Applied Life Sciences ViennaViennaAustria

Personalised recommendations