Skip to main content
Log in

River-Stream Connectivity Affects Fish Bioassessment Performance

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Stream fish bioassessment methods assume that fish assemblages observed in sample sites reflect responses to local stressors, but fish assemblages are influenced by local factors as well as regional dispersal to and from connected streams. We hypothesized that fish movement to and from refugia and source populations in connected rivers (i.e., riverine dispersal) would weaken or decouple relations between fish community metrics and local environmental conditions. We compared fish-environment relations between streams that flow into large rivers (mainstem tributaries) and streams that lack riverine confluences (headwater tributaries) at multiple spatial grains using data from the USEPA’s Environmental Monitoring and Assessment Program in the mid-Atlantic highlands, USA (n = 157 sites). Headwater and mainstem tributaries were not different in local environmental conditions, but showed important differences in fish metric responses to environmental quality gradients. Stream sites flowing into mainstem channels within 10 fluvial km showed consistently weaker relations to local environmental conditions than stream sites that lacked such mainstem connections. Moreover, these patterns diminished at longer distances from riverine confluences, consistent with the hypothesis of riverine dispersal. Our results suggest that (1) the precision of fish bioassessment metrics may be improved by calibrating scoring criteria based on the spatial position of sites within stream networks and (2) the spatial grain of fish bioassessment studies may be manipulated to suit objectives by including or excluding fishes exhibiting riverine dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angermeier PL, Smogor RA, Stauffer JR (2000) Regional frameworks and candidate metrics for assessing biotic integrity in mid-Atlantic highland streams. Transactions of the American Fisheries Society 129:962–981

    Article  Google Scholar 

  • Bailey RC, Reynoldson TB, Yates AG, Bailey JB, Linke S (2007) How bioassessment of streams integrated with landscape ecology can inform landuse planning. Freshwater Biology 52:908–917

    Article  Google Scholar 

  • Balon EK (1981) Additions and amendments to the classification of reproductive styles in fishes. Environmental Biology of Fishes 6:377–389

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. USEPA, Washington, DC, pp 339

    Google Scholar 

  • Bramblett RG, Johnson TR, Zale AV, Heggem DG (2005) Development and evaluation of a fish assemblage index of biotic integrity for northwestern great plains streams. Transactions of the American Fisheries Society 134:624–640

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Wisconsin. Ecological Monographs 27:325–349

    Article  Google Scholar 

  • Bryce SA, Larsen DP, Hughes RM, Kaufmann PR (1999) Assessing relative risks to aquatic ecosystems: a mid-Appalachian case study. Journal of American Water Research Association 35:23–36

    Article  Google Scholar 

  • Campbell-Grant EH, Lowe WH, Fagan WF (2007) Living in the branches: population dynamics and ecological processes in dendritic networks. Ecology Letters 10:165–175

    Article  Google Scholar 

  • Clinton BD, Vose JM (2006) Variation in stream water quality in an urban headwater stream in the southern Appalachians. Water, Air, and Soil Pollution 169:331–353

    Article  CAS  Google Scholar 

  • Cyterski M, Barber C (2006) Identification and prediction of fish assemblages in streams of the mid-Atlantic highlands, USA. Transactions of the American Fisheries Society 135:40–48

    Article  Google Scholar 

  • Davis W, Scott J (2000) Mid-Atlantic highlands streams assessment: technical support document. Region 3, U.S. Environmental Protection Agency, Ft. Meade, Maryland, pp 113

    Google Scholar 

  • Detenbeck N, Cincotta DA, Denver JM, Greenlee SK, Olsen AR, Pitchford AM (2005) Watershed-based survey designs. Environmental Monitoring and Assessment 103:59–81

    Article  CAS  Google Scholar 

  • Dow CL, Arscott DB, Newbold JD (2006) Relating major ions and nutrients to watershed conditions across a mixed-use, water-supply watershed. Journal of the North American Benthological Society 25:887–911

    Article  Google Scholar 

  • Etnier DA, Starnes WC (1993) The Fishes of Tennessee. University of Tennessee Press, Knoxville, Tennessee, pp 689

    Google Scholar 

  • Fagan WF (2002) Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:3243–3249

    Article  Google Scholar 

  • Fagan WF, Aumann C, Kennedy CM, Unmack PJ (2005) Rarity, fragmentation, and the scale dependence of extinction risk in desert fishes. Ecology 86:34–41

    Article  Google Scholar 

  • Fausch KD, Torgersen CE, Baxter CV, Li HW (2002) Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. BioScience 52:483–498

    Article  Google Scholar 

  • Fraser DF, Gilliam JF, Daley MJ, Le AN, Skalski GT (2001) Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. The American Naturalist 158:124–135

    Article  CAS  Google Scholar 

  • Freeman MC, Marcinek PA (2006) Fish assemblage responses to water withdrawals and water supply reservoirs in Piedmont streams. Environmental Management 38:435–450

    Article  Google Scholar 

  • Freeman PL, Schorr MS (2004) Influence of watershed urbanization on fine sediment and macroinvertebrate assemblage characteristics in Tennessee Ridge and Valley streams. Journal of Freshwater Ecology 19:353–362

    Google Scholar 

  • Gorman OT (1986) Assemblage organization of stream fishes: the effect of adventitious streams. The American Naturalist 128:611–616

    Article  Google Scholar 

  • Goslee S, Urban D (2006) ecodist: Dissimilarity-based functions for ecological analysis. R package (version 1.01)

  • Grenouillet G, Pont D, Herisse C (2004) Within-basin fish assemblage structure: the relative influence of habitat versus stream spatial position on local species richness. Canadian Journal of Fisheries and Aquatic Sciences 61:93–102

    Article  Google Scholar 

  • Guenther CB, Spacie A (2006) Changes in fish assemblage structure of impoundments within the upper Wabash River basin, Indiana. Transactions of the American Fisheries Society 135:570–583

    Article  Google Scholar 

  • Hack JT (1957) Studies of stream profiles in Virginia and Maryland. U.S. Geological Survey, Washington, DC, pp 97

    Google Scholar 

  • Hering D, Johnson RK, Framm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51:1757–1785

    Article  Google Scholar 

  • Herlihy AT, Stoddard JL, Johnson CB (1998) The relationship between stream chemistry and watershed land cover data in the mid-Atlantic region, U.S. Water, Air, and Soil Pollution 105:377–386

    Article  CAS  Google Scholar 

  • Herlihy AT, Larsen DP, Paulsen SG, Urquhart NS, Rosenbaum BJ (2000) Designing a spatially balanced, randomized site selection process for regional stream surveys: the EMAP mid-Atlantic pilot study. Environmental Monitoring and Assessment 63:95–113

    Article  CAS  Google Scholar 

  • Hitt NP (2007) Effects of stream network topology on fish assemblage structure and bioassessment sensitivity in the mid-Atlantic highlands, USA. Ph.D. Dissertation. Department of Fisheries and Wildlife Sciences, Virginia Tech. Blacksburg, Virginia, 261 pp

  • Hitt NP, Angermeier PL (2006) Effects of adjacent streams on local fish assemblage structure in western Virginia: implications for biomonitoring. American Fisheries Society Symposium 48:75–86

    Google Scholar 

  • Hitt NP, Angermeier PL (2008). Evidence for fish dispersal from spatial analysis of stream network topology. J North Am Benthol Soc, in press

  • Hitt NP, Frissell CA, Muhlfeld CC, Allendorf FW (2003) Spread of hybridization between native westslope cutthroat trout, Oncorhynchus clarki lewisi, and nonnative rainbow trout, Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Science 60:1440–1451

    Article  Google Scholar 

  • Hughes RM, Gammon JR (1987) Longitudinal changes in fish assemblages and water quality in the Willamette River, Oregon. Transactions of the American Fisheries So 116:196–209

    Article  Google Scholar 

  • Jenkins RE, Burkhead NM (1994) Freshwater Fishes of Virginia. American Fisheries Society, Bethesda, Maryland, pp 1079

    Google Scholar 

  • Jones KB, Neale AC, Wade TG, Wickham JD, Cross CL, Edmonds CM, Loveland TR, Nash MS, Riitters KH, Smith ER (2001) The consequences of landscape change on ecological resources: an assessment of the United States mid-Atlantic region, 1973–1993. Ecosystem Health 7:229–242

    Article  Google Scholar 

  • Karr JR, Chu EW (2000) Sustaining living rivers. Hydrobiologia 422/423:1–14

    Article  CAS  Google Scholar 

  • Karr JR, Fausch KD, Angermeier PL, Yant PR, Schlosser IJ (1986) Assessing biological integrity in running waters: a method and its rationale. Illinois Natural History Survey, Special Publication 5, Champaign, Illinois

    Google Scholar 

  • Kennard MJ, Arthington AH, Pusey BJ, Harch BD (2005) Are alien fish a reliable indicator of river health? Freshwater Biology 50:174–193

    Article  Google Scholar 

  • King RS, Baker ME, Whigham DF, Weller DE, Jordan TE, Kazyak PF, Hurd MK (2005) Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15:137–153

    Article  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Lamouroux N, Olivier J, Capra H, Zylberblat M, Chandesris A, Roger P (2006) Fish community changes after minimum flow increase: testing quantitative predictions in the Rhone River at Pierre-Be´nite, France. Freshwater Biology 51:1730–1743

    Article  Google Scholar 

  • Lazorchak JM, Klemm DJ, Peck DV (1998) Environmental Monitoring and Assessment Program - Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. U.S. Environmental Protection Agency, EPA-620-R-94–004-F

  • Lee DS, Gilbert CR, Hocutt CH, Jenkins RE, McAllister DE, Stauffer JC (1980) Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, North Carolina, pp 854

    Google Scholar 

  • Linke S, Norris RK, Faith DP, Stockwell D (2005) ANNA: A new prediction method for bioassessment programs. Freshwater Biology 50:147–158

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220

    CAS  Google Scholar 

  • Matthews WJ, Robison HW (1998) Influence of drainage connectivity, drainage area, and regional species richness on fishes of the interior highlands in Arkansas. The American Midland Naturalist 139:1–19

    Article  Google Scholar 

  • McCormick FH, Hughes RM (1998) Aquatic Vertebrates. In Lazorchak JM, Klemm DJ, Peck DV (eds) Environmental Monitoring and Assessment Program - Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. Environmental Protection Agency, EPA-620-R-94–004-F pp 161–182

  • McCormick FH, Hughes RM, Kaufmann PR, Peck DV, Stoddard JL, Herlihy AT (2001) Development of an Index of Biotic Integrity for the mid-Atlantic highlands region. Transactions of the American Fisheries Society 130:857–877

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107

    Article  Google Scholar 

  • Mugodo J, Kennard MJ, Liston P, Nichols S, Linke S, Norris RH, Lintermans M (2006) Local stream habitat variables predicted from catchment scale characteristics are useful for predicting fish distribution. Hydrobiologia 572:59–70

    Article  Google Scholar 

  • Oberdorff T, Pont D, Hugueny B, Chessel D (2001) A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment. Freshwater Biology 46:399–415

    Article  Google Scholar 

  • Osborne LL, Wiley MJ (1992) Influence of tributary spatial position on the structure of warmwater fish communities. Canadian Journal of Fisheries and Aquatic Sciences 49:671–681

    Google Scholar 

  • Osborne LL, Kohler SL, Bayley PB, Day DM, Bertrand WA, Wiley MJ, Sauer R (1992) Influence of stream location in a drainage network on the index of biotic integrity. Transactions of the American Fisheries Society 121:635–643

    Article  Google Scholar 

  • Platts WS, Megahan WF, Minshall GW (1983) Methods for Evaluating Stream, Riparian, and Biotic Conditions. U.S. Department of Agriculture, Forest Service, Washington, DC, pp 71

    Google Scholar 

  • Pont D, Hugueny B, Beier U, Goffaux D, Melcher A, Noble R, Rogers C, Roset N, Schmutz S (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. The Journal of Applied Ecology 43:70–80

    Article  Google Scholar 

  • Rahel FJ, Hubert WA (1991) Fish assemblages and habitat gradients in a Rocky Mountain-Great Plains stream: biotic zonation and additive patterns of community change. Transactions of the American Fisheries Society 120:319–332

    Article  Google Scholar 

  • Roth NE, Southerland MT, Chaillou J, Kazyak PF, Stranko SA (2000) Refinement and validation of a fish index of biotic integrity for Maryland streams. Maryland Department of Natural Resources, Annapolis, Maryland

    Google Scholar 

  • Schaefer JF, Kerfoot JR (2004) Fish assemblage dynamics in an adventitious stream: a landscape perspective. The American Midland Naturalist 151:134–145

    Article  Google Scholar 

  • Schlosser IJ (1990) Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management and assessment. Environmental Management 14:621–628

    Article  Google Scholar 

  • Smith TA, Kraft CE (2005) Stream fish assemblages in relation to landscape position and local habitat variables. Transactions of the American Fisheries Society 134:430–440

    Article  Google Scholar 

  • Smogor RA, Angermeier PL (1999a) Effects of drainage basin and anthropogenic disturbance on relations between stream size and IBI metrics in Virginia. In: Simon TP (ed) Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press, Boca Raton, Florida, pp 249–272

    Google Scholar 

  • Smogor RA, Angermeier PL (1999b) Relations between fish metrics and measures of disturbance in three IBI regions in Virginia. In: Simon TP (ed) Assessing the sustainability and biological integrity of water resources using fish communities. CRC press, Boca Raton, Florida, pp 585–610

    Google Scholar 

  • Snyder CD, Young JA, Villella R, Lemarie DP (2003) Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology 18:647–664

    Article  Google Scholar 

  • Stewart JS, Wang L, Lyons J, Horwatich JA, Bannerman R (2001) Influences of watershed, riparian-corridor, and reach-scale characteristics on aquatic biota in agricultural watersheds. Journal of American Water Research Association 37: 1475–1487

    Article  Google Scholar 

  • Sutherland AB, Meyer JL, Gardiner EP (2002) Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshwater Biology 47:1791–1805

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37:130–137

    Article  Google Scholar 

  • Vondracek B, Blann KL, Cox CB, Nerbonne JF, Mumford KG, Nerbonne BA, Sovell LA, Zimmerman JKH (2005) Land use, spatial scale, and stream systems: lessons from an agricultural region. Environmental Management 36:775–791

    Article  Google Scholar 

  • Walters DM, Leigh DS, Bearden AB (2003) Urbanization, sedimentation, and the homogenization of fish assemblages in the Etowah River Basin, USA. Hydrobiologia 494:5–10

    Article  Google Scholar 

  • Wang L, Lyons J, Kanehl P, Gatti R (1997) Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12

    Article  Google Scholar 

  • Wiens JA (2001) The landscape context of dispersal. In: Clobert J, E Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, United Kingdom, pp 96–109

    Google Scholar 

  • Wilkinson CD, Edds D (2001) Spatial pattern and environmental correlates of a midwestern stream fish community: including spatial autocorrelation as a factor in community analyses. The American Midland Naturalist 146:271–289

    Article  Google Scholar 

  • Winston MR, Taylor CM, Pigg J (1991) Upstream extirpation of four minnow species due to damming of a prairie stream. Transactions of the American Fisheries Society 120:98–105

    Article  Google Scholar 

  • Wolman MG (1954) A method for sampling coarse river-bed material. Trans American Geophysical Union 35:951–956

    Google Scholar 

  • Wright KK, Li JL (2002) From continua to patches: examining stream community structure over large environmental gradients. Canadian journal of fisheries and aquatic sciences 59:1404–1417

    Article  Google Scholar 

  • Yoder CO, Rankin ET (1998) The role of biological indicators in a state water quality management process. Environmental Monitoring and Assessment 51:61–88

    Article  CAS  Google Scholar 

  • Yuan LL, Norton SB (2003) Comparing responses of macroinvertebrate metrics to increasing stress. Journal of the North American Benthological Society 22:308–322

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Betz, A. Dolloff, P. Flebbe, C. Heatwole, S. Sowa, R. Voshell, and C. Zipper for assistance in developing this research and reviewing previous manuscripts. We also thank two anonymous referees for their assistance. This work was supported by a Cunningham Fellowship (Virginia Polytechnic Institute and State University), the USEPA National Network for Environmental Management Studies, the USEPA Office of Water (Assessment and Watershed Protection Program Grants; X7-83256601), and the USEPA Science to Achieve Results program (RD-831368010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel P. Hitt.

Additional information

Virginia Cooperative Fish and Wildlife Research Unit—This Unit is jointly sponsored by the US Geological Survey, Virginia Polytechnic Institute and State University, Virginia Department of Game and Inland Fisheries, and Wildlife Management Institute.

Appendix

Appendix

Fish species classifications for metric calculations. Reproductive (Repro.) guilds are designed as: NL = nonlithophil, SL = simple lithophil, NSL = nonsimple lithophil (i.e., mineral substrate spawning with nest preparation and/or parental care). Trophic guilds are indicated as: INV = invertivore, IP = invertivore-piscivore, OH = omnivore-herbivore, and PIS = piscivore. Tolerance levels are indicated as: TOL = tolerant species and INT = intolerant species

Scientific name

Repro. Guilda

Trophic guildb

Tolerancec

Riverine specialistd

Anguillidae

Anguilla rostrata

 

IP

  

Atherinidae

Labidesthes sicculus

NL

INV

 

+

Catostomidae

Catostomus commersoni

SL

OH

TOL

 

Erimyzon oblongus

NSL

INV

  

Hypentelium nigricans

SL

INV

  

Ictiobus bubalus

NLe

INVe

 

+

Moxostoma cervinum

SL

INV

  

M. duquesnei

SL

INV

  

M. erythrurum

SL

INV

  

M. macrolepidotum

SL

INV

 

+

Thoburnia rhothoeca

SL

OH

INT

 

Centrarchidae

Ambloplites rupestris

NSL

IP

  

Lepomis auritus

NSL

IP

  

L. cyanellus

NL

IP

TOL

 

L. gibbosus

NL

INV

  

L. gulosus

NL

IP

  

L. macrochirus

NL

INV

TOL

 

L. megalotis

NSL

INV

 

+

Micropterus dolomieu

NSL

IP

  

M. punctulatus

NL

IP

 

+

M. salmoides

NL

PIS

  

Pomoxis annularis

NL

IP

 

+

P. nigromaculatus

NL

IP

  

Clupeidae

Dorosoma cepedianum

NL

OH

TOL

+

Cottidae

Cottus baileyi

NL

INV

  

C. bairdi

NL

INV

  

C. cognatus

NL

INV

  

C. carolinae

NL

INV

  

C. girardi

NL

INV

  

Cyprinidae

Campostoma anomalum

NSL

OH

  

Clinostomus elongatus

SL

INVf

  

C. funduloides

SL

INV

  

Cyprinella galactura

NL

INV

  

C. spiloptera

NL

INV

 

+

Cyprinus carpio

NL

OH

TOL

+

Erimystax insignis

SL

OH

  

Exoglossum laurae

NSL

INV

  

E. maxillingua

NSL

INV

  

Hybopsis amblops

SL

INV

INT

 

Luxilus albeolus

SL

INV

  

L. cerasinus

SL

INV

  

L. chrysocephalus

SL

INV

  

L. coccogenis

SL

INV

  

L. cornutus

SL

INV

  

Lythrurus ardens

SL

INV

  

L. lirus

SL

INV

  

Margariscus margarita

SL

INV

  

Nocomis leptocephalus

NSL

OH

  

N. micropogon

NSL

INV

  

N. platyrhynchus

NSL

INV

 

+

N. raneyi

NSL

INV

 

+

Notemigonus crysoleucas

NL

OH

TOL

 

Notropis amoenus

SL

INV

 

+

N. atherinoides

NL

INV

 

+

N. bifrenatus

NL

INV

  

N. buccatus

SL

OH

  

N. hudsonius

NL

INV

  

N. leuciodus

SL

INV

  

N. photogenis

SL

INV

 

+

N. procne

SL

INV

  

N. rubellus

SL

INV

 

+

N. rubricroceus

SL

INV

  

N. scabriceps

SL

INV

  

N. stramineus

SL

INV

 

+

N. telescopus

SL

INV

  

N. volucellus

NL

INV

 

+

Phenacobius teretulus

SL

INV

  

P. uranops

SL

INV

 

+

Phoxinus erythrogaster

SLe

OHe

  

P. oreas

SL

OH

  

P. tennesseensis

SL

OH

  

Pimephales notatus

NL

OH

TOL

 

P. promelas

NL

OH

TOL

 

Rhinichthys atratulus

SL

INV

TOL

 

R. cataractae

SL

INV

  

Semotilus atromaculatus

NSL

IP

TOL

 

S. corporalis

NSL

IP

 

+

Esocidae

    

Esox americanus

NL

PIS

  

E. niger

NL

PIS

  

Fundulidae

Fundulus catenatus

SL

INV

 

+

F. diaphanus

NL

INV

  

Ictaluridae

Ameiurus natalis

NL

IP

  

A. nebulosus

NL

OH

  

Ictalurus punctatus

NL

IP

 

+

Noturus flavus

NSL

INV

 

+

N. gilberti

NSL

INV

  

N. insignis

NSL

INV

  

Pylodictis olivaris

NSL

IP

 

+

Lepisosteidae

Lepisosteus osseus

NL

PIS

 

+

Percidae

Etheostoma caeruleum

SL

INV

  

E. camurum

NSL

INV

INTe

+

E. blennioides

NL

INV

 

+

E. flabellare

NSL

INV

TOL

 

E. kanawhae

SL

INV

  

E. longimanum

NSL

INV

  

E. nigrum

NL

INV

TOL

 

E. olmstedi

NL

INV

TOL

 

E. osburni

SL

INV

INT

 

E. rufilineatum

SL

INV

  

E. simoterum

NL

INV

  

E. stigmaeum

NSL

INV

 

+

E. swannanoa

SL

INV

  

E. variatum

SL

INV

INT

 

E. zonale

NL

INV

 

+

Percina burtoni

SL

INV

 

+

P. caprodes

SL

INV

 

+

P. evides

NSL

INV

INT

+

P. gymnocephala

SL

INV

 

+

P. macrocephala

SLg

INV

INTg

 

P. peltata

SL

INV

  

Sander canadense

SL

PIS

 

+

S. vitreus

SL

PIS

 

+

Percopsidae

Percopsis omiscomaycus

SL

OH

 

+

Petromyzontidae

Lampetra aepyptera

SL

OH

  

L. appendix

SL

OH

  

Salmonidae

Oncorhynchus mykiss

NSL

IP

  

Salmo trutta

NSL

IP

  

Salvelinus fontinalis

NSL

IP

INT

 

Sciaenidae

Aplodinotus grunniens

NL

INV

 

+

  1. aData from Jenkins and Burkhead (1994) unless otherwise noted
  2. bData from Smogor and Angermeier (1999a) but AHI and DAH combined into “omnivore-herbivore” sensu McCormick and others (2001)
  3. cClassifications from agreement between Smogor and Angermeier (1999a) and McCormick and others (2001). If a species is listed in one source but not the other and it has a tolerance classification, we included that classification here. If the species was not listed in either source, classifications (or lack thereof) are attributed to Barbour and others (1999)
  4. dRiverine specialists were assigned (+) as species reported by Jenkins and Burkhead (1994) to occupy “river” or “river and stream” habitats (but not smaller “creek” habitats)
  5. eEtnier and Starnes (1993)
  6. fLee and others (1980)
  7. gBarbour and others (1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitt, N.P., Angermeier, P.L. River-Stream Connectivity Affects Fish Bioassessment Performance. Environmental Management 42, 132–150 (2008). https://doi.org/10.1007/s00267-008-9115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-008-9115-5

Keywords

Navigation