Skip to main content
Log in

Estimation of Landscape Potential for Construction of Surface-Flow Wetlands for Wastewater Treatment in Estonia

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The main aim of this article is to demonstrate a method of complex landscape analysis in order to estimate the landscape suitability for the construction of surface-flow wetlands (SFW) for wastewater treatment. This is a multilevel suitability analysis from a more general regional (landscape) assessment based on a map of landscape types (1:100,000) toward a detailed analysis based on aerial orthophotos and detailed soil maps (1:10,000). The assessment scheme consists of landscape classification according to the physical–chemical properties of landscape factors (soil conditions, landforms, hydrogeology, expert decisions concerning landscape values, and suitability analysis). The partial suitability values of SFWs are derived by summarizing expert values for landscape factors (each ranging from −1 to +1). By multiplying the summarized partial suitability values with nature protection values (ranging from 0 to 1), we obtain the final suitability value for each landscape type. Any kind of nature protection area has been considered nonsuitable and excluded at regional-level analysis. The results of the regional analysis demonstrate that suitability is distributed relatively equally over the study area. The high suitability potential (classified as “very suitable”) is relatively evenly distributed in lowland regions throughout the country. The share of “very suitable” and “suitable” areas in different counties varies from 5 to 23% and 7 to 49%, respectively. The detailed analysis based on aerial orthophotos showed that areas suitable for SFWs can also be found within the areas determined to be unsuitable based on the less detailed map of landscape types, whereas differences are much greater between settlements chosen for the detailed suitability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi-Nedushan B, St-Hilaire A, Berube M, Robichaud E, Thiemonge N, Bobee B (2006) A review of statistical methods for evaluation of aquatic habitat suitability for instream flow assessment. River Res Appl 22:503–523

    Article  Google Scholar 

  • Arold I (2001) Landscape types of Estonia. University of Tartu, Tartu, Estonia [in Estonian]

  • Astover A, Roostalu H, Lauringson E, Lemetti I, Selge A, Talgre L, Vasiliev N, Mõtte M, Tõrra T, Penu P (2006) Changes in agricultural land use and in plant nutrient balances of arable soils in Estonia. Arch Agron Soil Sci 52:223–231

    Article  Google Scholar 

  • Baban SMJ, Wan-Yusof K (2003) Modelling optimum sites for locating reservoirs in tropical environments. Water Resources Manage 17:1–17

    Article  Google Scholar 

  • Baja S, Chapman DM, Dragovich D (2002) A conceptual model for defining and assessing land use management units using a fuzzy modeling approach in GIS environment. Environ Manage 29:647–661

    Article  Google Scholar 

  • Bastian O (2000) Landscape classification in Saxony (Germany)—A tool for holistic regional planning. Landscape Urban Planning 50:145–155

    Article  Google Scholar 

  • Bastian O, Schreiber K-F (eds) (1999) Analyse und ökologische Bewertung der Landschaft: 2. Neubearbeitete Auflage. Spektrum Akademischer Verlag, Heidelberg, 564 S

    Google Scholar 

  • Bedford BL, (1996) The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecol Appl 6:57–68

    Article  Google Scholar 

  • Birken M, Clarke G, Clarke M, Wilson A (1996) Intelligent GIS. Local decisions and strategic planning. 292 pp.

  • Brown G (2005) Mapping spatial attributes in survey research for natural resource management: Methods and applications. Soc Natural Resources 18:17–39

    Article  Google Scholar 

  • Dussault C, Courtois R, Ouellet JP (2006) A habitat suitability index model to assess moose habitat selection at multiple scales. Can J Forest Res 36:1097–1107

    Article  Google Scholar 

  • Duttmann R, Mosimann T (1995) Der Einsatz Geographisher Informationssysteme in der Landschaftsökologie—Konzeption und Anwendungen eines geoökologischen Informationssystems. In: Buziek G (ed) GIS in Forschung und Praxis. Verlag Konrad Wittwer, Stuttgart, pp 43–59

    Google Scholar 

  • Gross P (1995) GIS Anwendungen in der Wasserwirtschaft—Stand und Planung. In: Buziek G (ed) GIS in Forschung und Praxis. Verlag Konrad Wittwer, Stuttgart, pp 286–298

    Google Scholar 

  • Guiding principles for constructed treatment wetlands: Providing water quality and wildlife habitat. (1999) Developed by the Interagency Workgroup on Constructed Wetlands. Final draft 6/8/99, 39 pp

  • Herricks EE, Suen JP (2006) Integrative analysis of water quality and physical habitat in the ecological design of water resources projects. J Environ Sci Health A Toxic/Hazardous Substances Environ Engineering 41:1303–1314

    Article  CAS  Google Scholar 

  • Iital A, Stalnacke P, Deelstra J, Loigu E, Pihlak M (2005) Effects of large-scale changes in emissions on nutrient concentrations in Estonian rivers in the Lake Peipsi drainage basin. J Hydrol 304(1–4):261–273

    Article  CAS  Google Scholar 

  • Jaagus J, Ahas R (2000) Space–time variations of climatic seasons and their correlation with the phonological development of nature in Estonia. Climate Res 15:207–219

    Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis, New York

    Google Scholar 

  • Lange C (1995) Der zukünftige Einsatz von Geo-Informationssystemen bei der Fliessgewässerplanung. In: Buziek G. (ed) GIS in Forschung und Praxis. Verlag Konrad Wittwer, Stuttgart, pp. 277–285

    Google Scholar 

  • Leibak E, Lutsar L (eds) (1996) Estonian coastal and Floodplain meadows. Estonian Fund for Nature. With coastal and Floodplain Meadows of Estonia. Estonian Fund for Nature and WWF of Denmark. Tallinn. (in Estonian)

  • Loigu E, Leisk U (1996) Water quality of rivers in the drainage basin of Lake Peipsi. Hydrobiologia 338(1–3):25–35

    Article  CAS  Google Scholar 

  • Lyon JG, McCarthy J (1995) Introduction to wetland and environmental applications of GIS. In: McCarthy JJG (ed) Wetland and environmental applications of GIS Lyon. Lewis, Boca Raton, Florida, pp. 3–8

    Google Scholar 

  • Magoni M, Steiner F (2001) The environment in the provincial plan of Cremona, Italy. Environ Manage 27:639–654

    Article  CAS  Google Scholar 

  • Mander Ü, Kull A, Kuusemets V (2000) Nutrient flows and land use change in a rural catchment: A modelling approach. Landscape Ecol 15(3):187–199

    Article  Google Scholar 

  • Mander Ü, Külvik K, Jongman RHG (2003) Scaling in territorial ecological networks. Landscape 20(2):113–127

    Google Scholar 

  • Mander Ü, Mauring T (1997) Constructed wetlands for wastewater treatment in Estonia. Water Sci Technol 35:323–330

    Article  CAS  Google Scholar 

  • Mander Ü, Strandberg M, Mauring T, Remm K (2001) Wetlands as essential basis for sustainable development: Estonian case. In: Villacampa Y, Brebbia CA, Uso J-L (eds) Ecosystems and sustainable development III. WIT Press, Boston, pp 459–467

    Google Scholar 

  • Mauring T, Mander Ü, Kuusemets V, Öövel M (2001) Efficiency of wastewater treatment wetlands in Estonia. In: Villacampa Y, Brebbia CA, Uso J-L (eds) Ecosystems and sustainable development III. WIT Press, Boston, pp 479–491

    Google Scholar 

  • Mauring T, Mander Ü, Visse U (2002) Landscape analysis for implementing ecological engineering methods for wastewater treatment. Adv Ecol Sci 12:177–194

    Google Scholar 

  • McCauley LA, Jenkins DG (2005) GIS-based estimates of former and current depressional wetlands in an agricultural landscape. Ecol Appl 15:1199–1208

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York 936, pp.

    Google Scholar 

  • Paal J, Ilomets M, Fremstad E, Moen A, Borset E, Kuusemets V, Truus L, Leibak E. (1998). Estonian Wetland Inventory 1997. Estonian Ministry of Environment. Eesti Loodusfoto, Tartu, 166p + 28p color sheets

  • Palik BJ, Buech R, Egeland L (2003) Using an ecological land hierarchy to predict seasonal-wetland abundance in upland forests. Ecol Appl 13:1153–1163

    Article  Google Scholar 

  • Palmeri L, Bendoricchio G (2002) Siting and sizing of (re)constructed wetlands for watershed planning and management. Adv Ecol Sci 12:195–211

    Google Scholar 

  • Remm K, Külvik M, Ü Mander K Sepp (2004) Design of the Pan-European Network: A national level attempt. In: Jongman RHG, Pungtti G (eds.) Ecological networks and greenways: Concept, design, implementation. Cambridge University Press, Cambridge, UK, pp. 151–170

    Google Scholar 

  • Richardson MS, Gatti RC (1999) Prioritizing wetland restoration activity within a Wisconsin watershed using GIS modeling. J Soil Water Conservation 54:537–542

    Google Scholar 

  • Ruhe C (1995) Einsatz eines GIS zur grossräumigen Beschreibung des Stoffhaushaltes im Grundwasser. In: Buziek G (ed) GIS in Forschung und Praxis. Verlag Konrad Wittwer, Stuttgart, pp 170–182

    Google Scholar 

  • Schlüter M, Rüger N, Savitsky AG, Novikova NM, Matthies M, Lieth H (2006) TUGAI: An integrated simulation tool for ecological assessment of alternative water management strategies in a degraded river delta. Environ Manage 38: 638–653

    Article  Google Scholar 

  • Steiner F (1991) Landscape planning—A method applied to a growth management example. Environ Manage 15:519–529

    Article  Google Scholar 

  • Trepel M, Palmeri L (2002a) A GIS-based score system for siting and sizing of created or restored wetlands: Two case studies. Water Resources Manage 16:307–328

    Article  Google Scholar 

  • Trepel M, Palmeri L (2002b) Quantifying nitrogen retention in surface flow wetlands for environmental planning at the landscape scale. Ecol Engineering 19:127–140

    Article  Google Scholar 

  • Van Lonkhuyzen RA, Lagory KE, Kuiper JA (2004) Modeling the suitability of potential wetland mitigation sites with a geographic information system. Environ Manage 33:368–375

    Article  Google Scholar 

  • Varep E (1964) The landscape regions of Estonia. Acta Commentationes Universitatis Tartuensis 156:3–28

    Google Scholar 

  • Vrba J, Zaporozec A (eds.) (1994) Guidebook on mapping groundwater vulnerability. Int Contrib Hydrogeol 16:131 [contribution to IHP-IV, Project M-1l.2(a)]

    Google Scholar 

  • Wakeley JS (1988) A method to create simplified versions of existing habitat suitability index (HIS) models. Environ Manage 12:79–83

    Article  Google Scholar 

  • White D, Fennessy S (2005) Modeling the suitability of wetland restoration potential at the watershed scale. Ecol Engineering 24:359–377

    Article  Google Scholar 

  • World reference base for soil resources (1998) 84 World soil resources reports. Food and Agriculture Organization of the United Nations, International Society of Soil Science ISSS-AISS-IBG, International Soil Reference and Information Centre ISRIC, Rome

    Google Scholar 

Download references

Acknowledgments

This article was supported by Target Funding Projects No. 0182534s03 of the Ministry of Education and Science, Estonia, and Estonian Science Foundation grant No. 6083. We thank Dr. Arno Kanal and Dr. Ain Kull from the Institute of Geography of the University of Tartu, Estonia, for their valuable comments on soil type classification and suitability analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merje Lesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesta, M., Mauring, T. & Mander, Ü. Estimation of Landscape Potential for Construction of Surface-Flow Wetlands for Wastewater Treatment in Estonia. Environmental Management 40, 303–313 (2007). https://doi.org/10.1007/s00267-005-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-005-0278-z

Keywords

Navigation