Skip to main content

Advertisement

Log in

A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

  • RESEARCH
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

We explored the potential of detecting three target invasive species: iceplant (Carpobrotus edulis), jubata grass (Cortaderia jubata), and blue gum (Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asner G. P. 1998. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment 64:234–253

    Article  Google Scholar 

  • Asner G. P., K. B. Heidebrecht. 2002. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. International Journal of Remote Sensing 23:3939–3958

    Article  Google Scholar 

  • Aspinall R. J., W. A. Marcus, J. W. Boardman. 2002. Considerations in collecting, processing, and analyzing high spatial resolution hyperspectral data for environmental investigations. Journal of Geographical Systems 4:15–29

    Article  Google Scholar 

  • Barbour M., B. Pavlik, F. Drysdale, S. Lindstrom. 1993. California’s changing landscapes. California Native Plant Society, Sacramento, California

    Google Scholar 

  • Bossard C., J. M. Randall, M. C. Hoshovsky. 2000. Invasive plants of California’s wildlands. University of California Press, Berkeley, California

    Google Scholar 

  • Clark R. N. 1999. Spectroscopy of rocks and minerals and principles of spectroscopy. In A. N. Rencz (ed), Remote sensing for the earth sciences: manual of remote sensing 3rd ed., vol. 3. John Wiley and Sons, New York, pp 3–58

    Google Scholar 

  • Clark R. N., T. L. Roush. 1984. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research 89:6329–6340

    Article  CAS  Google Scholar 

  • Curran P. J. 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment 30:271–278

    Article  Google Scholar 

  • Davis F. W., D. E. Hickson, D. C. Odion. 1988. Composition of maritime chaparral related to fire history and soil, Burton Mesa, Santa Barbara County, California. Madroño 35:169–195

    Google Scholar 

  • Dewey S. A., K. P. Price, D. Ramsey. 1991. Satellite remote sensing to predict potential distribution of dyers woad (Isatis tinctoia). Weed Technology 5:479–484

    Google Scholar 

  • DiPietro D., S. L. Ustin, E. C. Underwood, K. Olmstead, G. J. Scheer. 2002. Mapping the invasive riparian weed Arundo donax (Giant Reed) using AVIRIS. In Proceedings of the Eleventh Annual JPL Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Workshop, 27 February–2 March, 2001. Jet Propulsion Laboratory, Pasadena, California, pp 65–74

  • Drake J. A., H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmánek, M. Williamson (eds). 1989. Biological invasions. A global perspective. John Wiley & Sons, Chichester, U.K

    Google Scholar 

  • Ehlers M., W. Welch, Y. Ling. 2004. GIS and context based image enhancement. In Proceedings of the XXth International Society for Photogrammetry and Remote Sensing conference. Istanbul, Turkey, pp 397–402

  • Elvidge C. D. 1990. Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing 11:1775–1795

    Google Scholar 

  • Everitt J. H., G. L. Anderson, D. E. Escobar, M. R. Davis, N. R. Spencer, R. J. Andrascik. 1995. Use of remote sensing for detecting and mapping leafy spurge (Euphorbia esula). Weed Technology 9:599–609

    Google Scholar 

  • Everitt J. H., D. E. Escobar, M. A. Alaniz, M. R. Davis, J. V. Richerson. 1996. Using spatial information technologies to map Chinese tamarisk (Tamarix chinensis) infestations. Weed Science 44:194–201

    CAS  Google Scholar 

  • Fuentes D.A., J. A. Gamon, H. L. Qiu, D. A. Sims, D. A. Roberts. 2001. Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from the AVIRIS sensor. Journal of Geophysical Research-Atmospheres 106(D24):33565–33577

    Article  Google Scholar 

  • Gamon J. A., C. B. Field, M. L. Goulden, K. L. Griffin, A. E. Hartley, J. Geeske, J. Penuelas, R. Valintini. 1994. Relationship between NDVI, canopy structure, and photosynthesis in three California vegetation types. Ecological Applications 5:28–41

    Article  Google Scholar 

  • Gamon J. A., C. B. Field, D. A. Roberts, S. L. Ustin, R. Valentini. 1993. Functional patterns in an annual grassland during an AVIRIS overflight. Remote Sensing of Environment 44:239–253

    Article  Google Scholar 

  • Garcia M., S. L. Ustin. 2001. Detection of interannual vegetation responses to climatic variability using AVIRIS data in a coastal savanna in California. IEEE Transactions on GeoScience and Remote Sensing 39:1480–1490

    Article  Google Scholar 

  • Green A. A., M. Berman, P. Switzer, M. D. Craig. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing 26:65–74

    Article  Google Scholar 

  • Jensen J. R. 1996. Introductory digital image processing: a remote sensing perspective. 2nd edition. Prentice Hall, Upper Saddle River, New Jersey. pp 247–249

    Google Scholar 

  • Jensen J. R. 2004. Introductory digital image processing: a remote sensing perspective. 3rd edition. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Keil J. J., V. L. Holland. 1998. The vegetation of Vandenberg Air Force Base. Report prepared for The Nature Conservancy and Vandenberg Air Force Base

  • Kokaly R. F., D. G. Despain, R. N. Clark, K. Eric Livo. 2002. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment 84:437–456

    Article  Google Scholar 

  • Kokaly R. F, R. N. Clark. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment 67:267–287

    Article  Google Scholar 

  • Landis J., G. G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  • Lambrinos J. G. 2001. The expansion history of a sexual and asexual species of Cortaderia in California, USA. Journal of Ecology 89:88–98

    Article  Google Scholar 

  • McCune B., J. B. Grace. 2002. Analysis of ecological communities. MjM Software, Gleneden Beach, Oregon

  • Mack M. C., C. M. D’Antonio. 1998. Impacts of biological invasions on disturbance regimes. Trends in Ecology and Evolution 13:195–198

    Article  Google Scholar 

  • Markham B. L., J. R. G. Townshend. 1981. Land cover classification accuracy as a function of sensor spatial resolution. In Proceedings of 15th International Symposium on Remote Sensing. Ann Arbor, Michigan. pp 1075–1090

  • Moody A., C. E. Woodcock. 1994. Scale-dependent errors in the estimation of land-cover proportions: implications for global land-cover datasets. Photogrammetric Engineering Remote Sensing 60:585–594

    Google Scholar 

  • Nelson R., B. Holben. 1986. Identifying deforestation in Brazil using multiresolution satellite data. International Journal of Remote Sensing 7:429–448

    Google Scholar 

  • Okin G. S., D. A. Roberts, B. Murray, W. J. Okin. 2001. Practical limits on hyperspectral vegetation discrimination in arid and semi-arid environments. Remote Sensing of Environment 77:212–225

    Article  Google Scholar 

  • Olmstead K., S. L. Ustin, T. Ernst. 2005. Using CART modeling and AVIRIS imagery for assessing risk of weed invasion at Vandenberg Air Force Base. In Proceedings of the Eleventh Annual JPL Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Workshop, 31 March–2 April 2004. Jet Propulsion Laboratory, Pasadena, California (accessed at ftp://popo.jpl.nasa.gov/pub/docs/workshop/04-docs/toc.html)

  • Pax-Lenney M., C. E. Woodcock. 1997. The effect of spatial resolution on the ability to monitor the status of agricultural lands. Remote Sensing of the Environment 61:210–220

    Article  Google Scholar 

  • Peñuelas J., J. Pinol, R. Ogaya, I. Filella. 1997. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). International Journal of Remote Sensing 18:2869–2875

    Article  Google Scholar 

  • Price J. C. 2003. Comparing MODIS and ETM+ for regional and global land classification. Remote Sensing of Environment 86:491–499

    Article  Google Scholar 

  • Rahman A. F., J. A. Gamon, D. A. Sims, M. Schmidts. 2003. Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland. Remote Sensing of Environment 84:192–207

    Article  Google Scholar 

  • Research Systems Inc. 2003. Environment for Visualizing Images (ENVI) software version 4. Boulder, Colorado

  • Roberts D. A., S. L. Ustin, S. Ogunjemiyo, J. Greenberg, S. Z. Dobrowski, J. Chen, T. M. Hinckley. 2004. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 7:545–562

    Article  Google Scholar 

  • Roberts D. A., M. Gardner, R. Church, S. Ustin, G. Scheer, O. Green. 1998. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment 65:267–279

    Article  Google Scholar 

  • Sanderson E. W., M. Zhang, S. L. Ustin, E. Rejmankova. 1998. Geostatistical scaling of canopy water content in a California salt marsh. Landscape Ecology 13:79–92

    Article  Google Scholar 

  • Sims D. A., J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81:337–354

    Article  Google Scholar 

  • Smith M. O., P. E. Johnson, J. B. Adams. 1985. Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis. Fifteenth Lunar Planet Scientific Conference Part 2. Journal of Geophysical Research (Supplement), pp C797–C804

  • Story M., R. G. Congalton. 1986. Accuracy assessment, a user’s perspective. Photogrammetric Engineering and Remote Sensing 52:397–399

    Google Scholar 

  • The Nature Conservancy. 1991. Fish and wildlife management plan for Vandenberg Air Force Base. Revision number 3 for Plan Period August 1991 to August 1996. The Nature Conservancy

  • Turner M. G., R. V. O’Neill, R. H. Gardner, B.T. Milne. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology 3:153–162

    Article  Google Scholar 

  • Underwood E. C., S. L. Ustin, D. DiPietro. 2003. Mapping non-native plants using hyperspectral imagery. Remote Sensing of Environment 86:150–161

    Article  Google Scholar 

  • Ustin S. L., Q. J. Hart, L. Duan, G. Scheer. 1996. Vegetation mapping on hardwood rangelands in California. International Journal of Remote Sensing 17:3015–3036

    Google Scholar 

  • Ustin S. L., D. A. Roberts, J. E. Pinzon, S. Jacquemoud, G. Scheer, C. M. Castenada, A. Palacios. 1998. Estimating canopy water content of chaparral shrubs using optical methods. Remote Sensing of Environment 65:280–291

    Article  Google Scholar 

  • Ustin S. L., D. A. Roberts, R. O. Green, R. J. Zomer, M. Garcia. 1999. Remote sensing methods monitor natural resources. Photonics Spectra 33:108–113

    Google Scholar 

  • Ustin S. L., Q. F. Xiao. 2001. Mapping successional boreal forests in interior central Alaska. International Journal of Remote Sensing 22:1779–1797

    Article  Google Scholar 

  • Ustin S. L., S. Jacquemoud, P. J. Zarco-Tejada. 2004a. In S. L. Ustin (ed) Remote sensing of natural resource management and environmental monitoring: manual of remote sensing. 3rd ed., vol. 4. John Wiley and Sons, New York. pp 679–729

  • Ustin S. L., D. A. Roberts, J. A. Gamon, G. P. Asner, R. O. Green. 2004b. Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534

    Article  Google Scholar 

  • Vane G., A. F. H. Goetz. 1993. Terrestrial imaging spectrometry: current status future trends. Remote Sensing of Environment 44:117–126

    Article  Google Scholar 

  • Vitousek P. 1986. Biological invasions and ecosystem properties: can species make a difference? In H. A. Mooney, J. A. Drake (eds), Ecology of biological invasions of North America and Hawaii. Springer-Verlag, New York, pp 163–176

    Google Scholar 

  • Wessman C. A. 1990. Evaluation of canopy biochemistry. In R. J. Hobbs, H. A. Mooney (eds), Remote sensing of biosphere functioning. Springer-Verlag, New York, pp 135–156

    Google Scholar 

  • Westman W. E., C. V. Price. 1988. Detecting air pollution stress in southern California vegetation using LANDSAT Thematic Mapper band data. Photogrammetric Engineering and Remote Sensing 54:1305–1311

    Google Scholar 

  • Williams A. E. P., E. R. Hunt. 2002. Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sensing of Environment 82:446–456

    Article  Google Scholar 

  • Woodcock C. E., A. H. Strahler. 1987. The factor of scale in remote sensing. Remote Sensing of Environment 21:311–322

    Article  Google Scholar 

  • Zarco-Tejada P. J., J. R. Miller, A. Morales, A. Berjón, J. Agüera. 2004. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment 90:463–476

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Strategic Environmental Research and Development Program (grant no. DACA72-00-C-0012) and the NSF IGERT program for funding this research. We gratefully thank Dr. Megan Lewis, University of Adelaide, for guidance and valuable suggestions on the manuscript and Teresa Magee and Ted Ernst at Dynamac Corporation for assisting with the ecological data analysis. Valuable technical assistance was provided by researchers at CSTARS, U.C. Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma C. Underwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, E.C., Ustin, S.L. & Ramirez, C.M. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California. Environmental Management 39, 63–83 (2007). https://doi.org/10.1007/s00267-005-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-005-0228-9

Keywords

Navigation