Skip to main content
Log in

Groundwater Vulnerability Assessment for Organic Compounds: Fuzzy Multicriteria Approach for Mexico City

  • ENVIRONMENTAL ASSESSMENT
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

This study was based on a groundwater vulnerability assessment approach implemented for the Mexico City Metropolitan Area (MCMA). The approach is based on a fuzzy multicriteria procedure integrated in a geographic information system. The approach combined the potential contaminant sources with the permeability of geological materials. Initially, contaminant sources were ranked by experts through the Analytic Hierarchy Process. An aggregated contaminant sources map layer was obtained through the simple additive weighting method, using a scalar multiplication of criteria weights and binary maps showing the location of each source. A permeability map layer was obtained through the reclassification of a geology map using the respective hydraulic conductivity values, followed by a linear normalization of these values against a compatible scale. A fuzzy logic procedure was then applied to transform and combine the two map layers, resulting in a groundwater vulnerability map layer of five classes: very low, low, moderate, high, and very high. Results provided a more coherent assessment of the policy-making priorities considered when discussing the vulnerability of groundwater to organic compounds. The very high and high vulnerability areas covered a relatively small area (71 km2 or 1.5% of the total study area), allowing the identification of the more critical locations. The advantage of a fuzzy logic procedure is that it enables the best possible use to be made of the information available regarding groundwater vulnerability in the MCMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Literature Cited

  • Banai-Kashani R. 1989. A new method for site suitability analysis: The Analytic Hierarchy Process. Environmental Management 13:685–693

    Article  Google Scholar 

  • Birkle P., V. Torres-Rodríguez, E. González-Partida. 1995. Effects of evapotranspiration on the water balance of the Valley of Mexico. Geofísica Internacional 35:63–72

    Google Scholar 

  • Bojadziev G., M. Bojadziev. 1995. Fuzzy sets, fuzzy logic, applications. World Scientific, River Edge, NJ.

    Google Scholar 

  • Bojórquez-Tapia L. A., L. Juárez, G. Cruz-Bello. 2002. Integrating fuzzy logic, optimization, and GIS for ecological impact assessments. Environmental Management 30:418–433.

    Google Scholar 

  • Cox E. 1994. The fuzzy system handbook: A practitioner’s guide to building, using, and maintaining fuzzy systems. AP Professional, Boston, MA

    Google Scholar 

  • Daly D., A. Dassargues, D. Drew, S. Dunne, N. Goldscheider, S. Neale, I. C. Popescu, F. Zwahlen. 2002. Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeology Journal 10:340–345.

    Article  Google Scholar 

  • DGCOH (Dirección General de Construcción y Operación Hidráulica). 1993. Fuentes de contaminación al agua subterránea y alternativas de saneamiento. Departamento del Distrito Federal Contract 3-33-1-0172, Mexico D.F., Mexico

  • DGCOH (Dirección General de Construcción y Operación Hidráulica). 1996. Plan maestro de drenaje de la Zona Metropolitana de la Ciudad de México 1994–2010. Departamento del Distrito Federal, Mexico D.F., Mexico

  • Durazo J., R. N. Farvolden. 1989. The groundwater regime of the Valley of Mexico from historic evidence and field observation. Journal of Hydrology 112:171–190

    Article  Google Scholar 

  • ERDAS. 1999. ERDAS IMAGINE 8.4 Tour Guide. ERDAS, Inc., Atlanta, GA

  • Ezcurra E., M. Mazari-Hiriart, I. Pisanty, A. G. Aguilar. 1999. The Basin of Mexico. critical environmental issues and sustainability. United Nations University Press. Tokyo

    Google Scholar 

  • Fuchs R. J. 1999. Introduction. In: R. J. Fuchs, E. Brennan, J. Chamie, F. Lo, J. I. Uitto (eds.). Mega-city growth and the future. United Nations University Press, Tokyo. Pp: 1–13

    Google Scholar 

  • Gogu R. C., A. Dassergues. 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay index methods. Environmental Geology 39:549–559

    Article  CAS  Google Scholar 

  • Howard K. W. F., K. K. Gelo. 2003. Intensive groundwater use in urban zones: The case of megacities. In: M. R. Llamas, E. Custodio (eds.). Intensive use of groundwater. Challenges and opportunities. Swets & Zeitlinger B.V., Lisse, The Netherlands. Pp: 35–58

    Google Scholar 

  • IMP (Instituto Mexicano del Petróleo). 1997. Sistemas de información geográfica aplicados a la información cartográfica del proyecto de investigación sobre materia particulada y deterioro atmosférico (IMADA) GCA-097085, Instituto Mexicano del Petróleo, Mexico, D.F., Mexico

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática). 1993. Ciudad de México (área metropolitana). Perfil Sociodemográfico, XI Censo General de Población y Vivienda. México, D.F., México, pp. 2

  • INEGI (Instituto Nacional de Estadística, Geografía e Informática). 1994. Censos Económicos. México D.F., México

    Google Scholar 

  • Jiménez-Cisneros B., M. Mazari-Hiriart, R. Domínguez-Mora, E. Cifuentes-García. 2004. El agua en el Valle de México. In: B. Jiménez, L. Marín (eds.).. El Agua en México vista desde la Academia. Academia Mexicana de Ciencias. Literal D. de R. L. México D.F., México. PP: 5–32

    Google Scholar 

  • Knox R. C., W. Canter. 1996. Prioritization of ground water contaminants and sources. Water, Air and Soil Pollution 88:205–226

    Article  CAS  Google Scholar 

  • Kosko B. 1992. Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Lesser J. M., M. A. Cortés. 1998. El hundimiento del terreno en la ciudad de México y sus implicaciones en el sistema de drenaje. Ingeniería Hidráulica en México 13:13–18

    Google Scholar 

  • Lesser, J. M., F. Sánchez, and D. González. 1986. Hidrogeoquímica del acuífero de la Ciudad de México. Ingeniería Hidráulica en México Septiembre–Diciembre: 64–77

  • Lesser, J. M., F. Sánchez-Díaz, and D. González-Posadas. 1990. Aspectos geohidrológicos de la Ciudad de México. Ingeniería Hidráulica en México Enero–Abril: 52–60

  • Llamas M. R., E. Custodio. 2003. Intensive use of groundwater: A new situation which demands proactive action. In: M. R. Llamas, E. Custodio (eds.). Intensive use of groundwater. Challenges and opportunities. Swets & Zeitlinger B.V., Lisse, The Netherlands. Pp: 13–31

    Google Scholar 

  • Lobo-Ferreira, J. P., and M. M. Oliveira. 1997. Drastic vulnerability mapping of Portugal. Pages 132–137 in Proceedings of the 27th Congress of the International Association for Hydraulic Research, Groundwater: An Endangered Resource, 10–15 August 1997, San Francisco

  • Mackay D. M., L. A. Smith. 1993. Organic contaminants. In: W. M. Alley (ed.). Regional ground-water quality. Van Nostrand Reinhold. New York. Pp: 323–343

    Google Scholar 

  • Malczewski J. 1999. GIS and multicriteria decision analysis. Wiley, New York

    Google Scholar 

  • Marín L. E., O. Escolero-Fuentes, A. Trinidad-Santos. 2002. physical geography, hydrogeology, and forest soils of the basin of Mexico. In: M. E. Fenn, L. I. de Bauer, T. Hernández-Tejeda (eds.). Urban air pollution and forests. Resources at risk in the Mexico City air basin. Springer-Velag, New York. Pp: 44–67

    Google Scholar 

  • Marsal, R. J., and M. Mazari. 1969. El subsuelo de la Ciudad de México. Universidad Nacional Autónoma de México, México, D.F., México, pp. 148–168

  • Marsal, R. J., and M. Mazari. 1990. Desarrollo de la mecánica de suelos en la Ciudad de México. En: Anon. El Subsuelo de la Cuenca del Valle de México y su Relación con la Ingeniería de Cimentaciones a Cinco Años del Sismo. Sociedad Mexicana de Mecánica de Suelos, A.C. México, pp. 3–25

  • Mazari M., D. M. Mackay. 1993. Potential for groundwater contamination in Mexico City. Environmental Science and Technology 27:794–802

    Article  CAS  Google Scholar 

  • Mazari M., J. Alberro, M. Mazari-Hiriart, S. González. 1996. Agrietamiento de arcillas lacustres y su relación con el uso y reúso del agua. In: M. Mazari (ed.). Hacia el Tercer Milenio. El Colegio Nacional, Mexico D.F., Mexico. Pp: 113–156

    Google Scholar 

  • Merino H. 2000. Sistema Hidráulico. In G. Garza (ed.). La Ciudad de México en el fin del segundo milenio. El Colegio de México-Gobierno del Distrito Federal, Mexico D.F., Mexico. Pp: 344–351

    Google Scholar 

  • Mooser F., C. Molina. 1993. Nuevo modelo hidrogeológico para la Cuenca de México. Centro de Investigación Sísmica de la Fundación Barros Sierra. Mexico D.F., Mexico, pp. 68–84

    Google Scholar 

  • Mooser F., A. Montiel, A. Zúñiga. 1996. Nuevo mapa geológico de las cuencas de México, Toluca y Puebla. Estratigrafía, tectónica regional y aspectos geotérmicos. Comisión Federal de Electricidad. Gráfica, Creatividad y Diseño, S.A. de C.V., México, D.F., México.

  • Ortega, A., and R. N. Farvolden. 1989. Computer analysis of regional groundwater flow and boundary conditions in the Basin of Mexico. Journal of Hydrology 110:271–294

    Google Scholar 

  • Pankow J. F., J. A. Cherry. 1996. Dense chlorinated solvents and other DNAPLs in groundwater: History, behavior, and remediation. Waterloo Press, Portland, OR

    Google Scholar 

  • PEMEX (Petróleos Mexicanos). 1997. Datos básicos de estaciones de servicio en el Valle de México. Internal report. Gerencia Comercial Zona Valle de México

  • Pye V I., R. Patrick, J. Quarles. 1983. Groundwater contamination in the United States. University of Pennsylvania Press. Philadelphia, PA

    Google Scholar 

  • Rail C. D. 2000. Contamination, sources and hydrology. Technomic Publishing,. Lancaster, PA

    Google Scholar 

  • Ramanathan R. 2001. A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management 63:27–35

    Article  CAS  Google Scholar 

  • Riosvelasco P. 1994. La disposición final de desechos sólidos en la Ciudad de México. Dirección General de Servicios Urbanos, Departamento del Distrito Federal, México D.F., México

    Google Scholar 

  • Rudolph D. L., E. O. Frind. 1991. Hydraulic response of highly compressible aquitards during consolidation. Water Resources Research 27:17–30

    Google Scholar 

  • Rudolph D. L., J. A. Cherry, R. N. Farvolden. 1991. Groundwater flow and solute transport in fractured lacustrine clay near Mexico City. Water Resources Research 27:2187–2201

    CAS  Google Scholar 

  • Saaty T. 1980. The Analytic Hierarchy Process. McGraw-Hill, New York

    Google Scholar 

  • Schwille F. 1988. Dense chlorinated solvents in porous and fractured media: Model experiments. Lewis, Ann Arbor, MI

    Google Scholar 

  • Tait N. G., D. N. Lerner J. W. N. Smith S. A. Leharne. 2004. Prioritisation of abstraction boreholes at risk from chlorinated solvent contamination on the UK Permo.Triassic Sandstone aquifer using a GIS. Science of the Total Environment 319:77–98

    Article  CAS  Google Scholar 

  • Thomas R. D. 1990. Evaluation of toxicity of volatile organic chemicals: General considerations. In: N. F. Ram, R. F. Christman, K. P. Cantor (eds). Significance and treatment of volatile organic compounds in water supplies. Lewis, Chelsea, MI. pp 451–463

    Google Scholar 

  • Thornton J. 2000. Pandora´s poison. Chlorine, health, and a new environmental strategy. MIT Press. Cambridge, MA

    Google Scholar 

  • UN (United Nations). 2002. World urbanization prospectus. The 2001 revision. Data tables and highlights. Department of Economic and Social Affairs. ST/ESA/SER.A/216. UN Secretariat, New York

  • UNESCO–WWAP (United Nations Educational, Scientific and Cultural Organization–World Water Development Report). 2003. Water for people water for life. World Water Assessment Program. Barcelona, Spain, pp. 157–175

  • USA–CERL. 2003. GRASS 5.8 (Geographic Resource Analysis Support System). United States Army Corps of Engineers Construction Engineers Research Laboratory. Champaign, IL

  • US EPA (US Environmental Protection Agency). 1993a. Ground water resources assessment. EPA 813-R-93-003. Office of Groundwater and Drinking Water, US Environmental Protection Agency, Washington, DC

  • US EPA (US Environmental Protection Agency). 1993b. A Review of Methods for Assessing Aquifer Sensitivity and Ground Water Vulnerability to Pesticide Contamination, EPA 813-R-93-002. U.S. Environmental Protection Agency, Washington, D.C

  • Vázquez, E. 1995. Modelo conceptual hidrogeológico y características hidráulicas del acuífero en explotación en la parte meridional de la Cuenca de México. M.Sc. thesis. Universidad Nacional Autónoma de México. Posgrado en Geofísica

  • Villa F., H. McLeod. 2002. Environmental vulnerability indicators for environmental planning and decision-making: Guidelines and applications. Environmental Management 29:335–346

    Article  Google Scholar 

  • Warren C. J., D. L. Rudolph. 1997. Clay minerals in basin of Mexico lacustrine sediments and their influence on ion mobility in groundwater. Journal of Contaminant Hydrology 27:177–198

    Article  CAS  Google Scholar 

  • Westrick J. J. 1990. National survey of organic compounds in ground and surface waters. In: N. F. Ram, R. F. Christman, K. P. Cantor (eds). Significance and treatment of volatile organic compounds in water supplies. Lewis, Chelsea, MI. pp 103–125

    Google Scholar 

Download references

Acknowledgments

We thank F. Mooser, J. M. Lesser, M. Mazari, C. Siebe, M. Maass, J. L. Palacio, M. A. Ortiz, and A. Zarco as well as the three anonymous reviewers for their invaluable contributions to the development of this article. This research was supported by DGAPA–UNAM, through project IN-225399. We also thank the Institutional Program of the Environment and Security at the Instituto Mexicano del Petróleo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Mazari-Hiriart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazari-Hiriart, M., Cruz-bello, G., Bojórquez-tapia, L.A. et al. Groundwater Vulnerability Assessment for Organic Compounds: Fuzzy Multicriteria Approach for Mexico City. Environmental Management 37, 410–421 (2006). https://doi.org/10.1007/s00267-005-0059-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-005-0059-8

Keywords

Navigation