Skip to main content
Log in

Revegetation Strategies for Bauxite Refinery Residue: A Case Study of Alcan Gove in Northern Territory, Australia

  • PROFILE
  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Alumina extraction from bauxite ore with strong alkali produces waste bauxite refinery residue consisting of residue sand and red mud. The amount and composition of refinery residue depend on the purity of the bauxite ore and extraction conditions, and differs between refineries. The refinery residue is usually stored in engineered disposal areas that eventually have to be revegetated. This is challenging because of the alkaline and sodic nature of the residue. At Alcan Gove’s bauxite refinery in Gove, Northern Territory, Australia, research into revegetation of bauxite residue has been conducted since the mid-1970s. In this review, we discuss approaches taken by Alcan Gove to achieve revegetation outcomes (soil capping of refinery residue) on wet-slurry disposal areas. Problems encountered in the past include poor drainage and water logging during the wet season, and salt scalding and capillary rise during the dry season. The amount of available water in the soil capping is the most important determinant of vegetation survival in the seasonally dry climate. Vegetation cover was found to prevent deterioration of the soil cover by minimising capillary rise of alkalinity from the refinery residue. The sodicity and alkalinity of the residue in old impoundments has diminished slightly over the 25 years since it was deposited. However, development of a blocky structure in red mud, presumably due to desiccation, allows root penetration, thereby supplying additional water to salt and alkali-tolerant plant species. This has led to the establishment of an ecosystem that approaches a native woodland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literature Cited

  • Alp A., M. S. Goral. 2003. The effects of the additives, calcination and leach conditions for alumina production from red mud. Scandinavian Journal of Metallurgy 32:301–305

    Article  CAS  Google Scholar 

  • Apak R., E. Tütem, M. Hügül, J. Hizal. 1998. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Research 32:430–440

    Article  CAS  Google Scholar 

  • Barber S. A. 1984. Soil nutrient bioavailability: a mechanistic approach. Wiley-Interscience, New York, 398 pp

    Google Scholar 

  • Barrow N. J. 1982. Possibility of using caustic residue from bauxite for improving the chemical and physical properties of sandy soils. Australian Journal of Agricultural Research 33:275–285

    Article  CAS  Google Scholar 

  • Bell D. T., C. F. Wilkins, P. G. van der Moezel, S. C. Ward. 1993. Alkalinity tolerance of woody species used in bauxite waste rehabilitation, Western Australia. Restoration Ecology 1:51–58

    Google Scholar 

  • Cooper M. B., P. C. Clarke, W. Robertson, I. R. McPharlin, R. C. Jeffrey. 1995. An investigation of radionuclide uptake into food crops grown in soils treated with bauxite mining residues. Journal of Radioanalytical and Nuclear Chemistry, Articles 194:379–387.

    CAS  Google Scholar 

  • Courtney R. G., J. P. Timpson. 2004. Nutrient status of vegetation grown in alkaline bauxite processing residue amended with gypsum and thermally dried sewage sludge—a two year field study. Plant and Soil 266:187–194

    CAS  Google Scholar 

  • Courtney R., J. P. Timpson, E. Grennan. 2003. Growth of Trifolium pratense in red mud amended with process sand, gypsum and thermally dried sewage sludge. International Journal of Surface Mining, Reclamation and Environment 17:227–233

    Article  CAS  Google Scholar 

  • Fortin J., A. Karam. 1998. Effect of a commercial peat moss-shrimp wastes compost on pucinellia growth in red mud. International Journal of Surface Mining, Reclamation and Environment 12:105–109

    Google Scholar 

  • Friesl W., O. Horak, W. W. Wenzel. 2004. Immobilization of heavy metals in soil by the application of bauxite residues: pot experiments under field conditions. Journal of Plant Nutrition and Soil Science 167:54–59

    Article  CAS  Google Scholar 

  • Fuller R. D., E. D. P. Nelson, C. J. Richardson. 1982. Reclamation of red mud (bauxite residues) using alkaline-tolerant grasses with organic amendments. Journal of Environmental Quality 11:533–539

    Google Scholar 

  • Gee G. W., J. W. Bauder. 1986. Particle-size analysis. In: A. Klute (ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. Pages 383–411

    Google Scholar 

  • Genç H., J. C. Tjell, D. McConchie, O. Schuiling. 2003. Adsorption of arsenate from water using neutralized red mud. Journal of Colloid and Interface Science 264:327–334

    Article  Google Scholar 

  • Gillman G. P., E. A. Sumpter. 1986. Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research 24:61–66

    CAS  Google Scholar 

  • Glenister, D., D. Smirk, and G. Pickersgill. 1992. Bauxite residue—development of a resource. Pages 301–308 in International Bauxite Tailings Workshop 2–6 Nov 1992, Perth. Australian Bauxite and Alumina Producers, Perth

  • Gupta V. K., S. Sharma. 2002. Removal of cadmium and zinc from aqueous solutions using red mud. Environmental Science and Technology 36:3612–3617

    Article  CAS  Google Scholar 

  • Gupta V. K., Suhas, I. Ali, and V. K. Saini. 2004. Removal of Rhodamine B, Fast Green, and Methylene Blue from wastewater using red mud, aluminum industry waste. Industrial and Engineering Chemistry Research 43:1740–1747

    CAS  Google Scholar 

  • Haake G. 1988. Rotschlamm—Abfall oder verwertbares Nebenprodukt? (Red mud—waste or useable side-product?) Neue Hütte 33:424–429.

    CAS  Google Scholar 

  • Hanahan C., D. McConchie, J. Pohl, R. Creelman, M. Clark, C. Stocksiek. 2004. Chemistry of seawater neutralization of bauxite refinery residues (red mud). Environmental Engineering Science 21:125–138

    Article  CAS  Google Scholar 

  • Hausberg J., U. Happel, F. M. Meyer, M. Mistry, M. Röhrlich, M. Koch, P. N. Martens, J. Schlimbach, G. Rombach, J. Krüger. 2000. Global red mud reduction potential through optimised technologies and ore selection. Mineral Resources Engineering 9:407–420

    Google Scholar 

  • Hill G. F. 1942. Termites (Isoptera) from the Australian Region. CSIR, Melbourne, Australia, 479 pp

    Google Scholar 

  • Hinz, D. A. 1982. Plants survive hostile bauxite residue. In: Australian Mining Industry Council Environmental Workshop, Darwin. Australian Mining Industry Council, Canberra

  • Hinz D. A., H. P. Doettling. 1979. Rehabilitation of mined-out bauxite areas and red mud pond surfaces at Gove, NT, Australia. Light Metals 9:45–48

    Google Scholar 

  • Hutley L. B., A. P. O’Grady, D. Eamus. 2000. Evapotranspiration from eucalypt open-forest savanna of northern Australia. Functional Ecology 14:183–194

    Article  Google Scholar 

  • International Aluminium Institute. 2003. Alumina production. Form 650. http://www.world-aluminium.org/iai/stats/formServer.asp?form=5

  • Kabata-Pendias A., H. Kabata. 2001. Trace elements in soils and plants. CRC Press, Boca Raton, Florida, 413 pp

    Google Scholar 

  • Klute, A. 1986. Water retention: laboratory methods. Pages 635–662 in A. Klute (ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin

  • Klute A., Dirksen C. 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: A. Klute (ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin. Pages 687–734

    Google Scholar 

  • Kopittke P. M., N. W. Menzies. 2004. Effect of Mn deficiency and legume inoculation on rhizosphere pH in highly alkaline soils. Plant and Soil 262:13–21

    Article  CAS  Google Scholar 

  • Lewis L. W., J. Shim You, W. Pedersen, E. W. Black. 1995. Vegetation of thickened red mud tailings deposits without the use of soil capping techniques. Light Metals 1995:31–34

    Google Scholar 

  • Li L. Y. 1998. Properties of red mud tailings produced under varying process conditions. Journal of Environmental Engineering 124:254–264

    CAS  Google Scholar 

  • Li L. Y. 2001. A study of iron mineral transformation to reduce red mud tailings. Waste Management 21:525–534

    CAS  Google Scholar 

  • Lombi E., F.-J. Zhao, G. Wieshammer, G. Zhang, S. P. McGrath. 2002a. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution 118:445–452

    CAS  Google Scholar 

  • Lombi E., F.-J. Zhao, G. Zhang, B. Sun, W. Fitz, H. Zhang, S. P. McGrath. 2002b. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution 118:435–443

    CAS  Google Scholar 

  • López E., B. Soto, M. Arias, A. Núñez, D. Rubinos, M. T. Barral. 1998. Adsorbent properties of red mud and its use for wastewater treatment. Water Research 32:1314–1322

    Article  Google Scholar 

  • Martinent-Catalot V., J.-M. Lamerant, G. Tilmant, M.-S. Bacou, J. P. Ambrosi. 2002. Bauxaline: a new product for various applications of Bayer process red mud. Light Metals 2002:125–131

    Google Scholar 

  • McConchie D., P. Saenger, R. Fawkes. 1996. An environmental assessment of the use of seawater to neutralise bauxite refinery wastes. In: V. Ramachandran, C. C. Nesbitt (eds.), Second International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes, 27–30 Oct 1996, Scottsdale AZ. The Minerals, Metals and Materials Society, Warrendale, Pennsylvania. Pages 407–416

    Google Scholar 

  • McIntyre D. S. 1982. Capillary rise from saline groundwater in clay soil cores. Australian Journal of Soil Research 20:305–313

    Google Scholar 

  • Meecham J. R., L. C. Bell. 1977a. Revegetation of alumina refinery wastes. 1. Properties and amelioration of the materials. Australian Journal of Experimental Agriculture and Animal Husbandry 17:679–688

    CAS  Google Scholar 

  • Meecham J. R., L. C. Bell. 1977b. Revegetation of alumina refinery wastes. 2. Glasshouse experiments. Australian Journal of Experimental Agriculture and Animal Husbandry 17:689–696

    CAS  Google Scholar 

  • Menzies N. W., I. M. Fulton, W. J. Morrell. 2004. Seawater neutralization of alkaline bauxite residue and implications for revegetation. Journal of Environmental Quality 33:1877–1884

    CAS  Google Scholar 

  • Mohan R. K., J. B. Herbich, L. R. Hossner, F. S. Williams. 1997. Reclamation of solid waste landfills by capping with dredged material. Journal of Hazardous Materials 53:141–164

    Article  CAS  Google Scholar 

  • Mohapatra B. K., M. B. S. Rao, R. B. Rao, A. K. Paul. 2000. Characteristics of red mud generated at NALCO refinery, Damanjodi, India. Light Metals 2000: 161–165.

    Google Scholar 

  • Ochsenkühn-Petropulu M., T. Lyberopulu, G. Parissakis. 1994. Direct determination of lanthanides, yttrium and scandium in bauxites and red mud from alumina production. Analytica Chimica Acta 296:305–313

    Article  Google Scholar 

  • Pegrum, J. A. 1991. Future red mud disposal—notes on rehabilitation of red mud ponds. Environment Section, Nabalco Pty. Ltd, Gove, NT

  • Piga L., F. Pochetti, L. Stoppa. 1993. Recovering metals from red mud generated during alumina production. JOM 45:54–59.

    CAS  Google Scholar 

  • Polcaro A. M., S. Palmas, M. Mascia, F. Renoldi. 2000. Co-disposal of industrial wastes to obtain an inert material for environmental reclamation. Annali di Chimica 90:103–111

    CAS  Google Scholar 

  • Raes, D. 2000. ETo: calculation of reference evapotranspiration. http://www.agr.kuleuven.ac.be/lbh/lsw/iupware/downloads/elearning/software/et0.htm

  • Raper, G. P. 1998. Agroforestry water use in Mediterranean regions of Australia. Rural Industry Research and Development Corporation, Barton, ACT, 71 pp

  • Sanders, G. 1996. Survey, mapping and environmental analysis of a bauxite residue disposal area. Hons.BSc. thesis, University of Melbourne, Melbourne

  • Snars K., R. Gilkes, J. Hughes. 2003. Effect of soil amendment with bauxite Bayer process residue (red mud) on the availability of phosphorus in very sandy soils. Australian Journal of Soil Research 41:1229–1241

    Article  CAS  Google Scholar 

  • Snars K., J. C. Hughes, R. J. Gilkes. 2004. The effects of addition of bauxite red mud to soil on P uptake by plants. Australian Journal of Agricultural Research 55:25–31

    Article  CAS  Google Scholar 

  • Subrahmanyam A. V., J. Singh. 1997. Occurrence of rare earth elements in Panchpatmali bauxite deposit and red mud, Koraput district, Orissa. Journal of the Geological Society of India 50:369–372

    CAS  Google Scholar 

  • Summers K. J., B. H. O’Connor, D. R. Fox. 1993. Radiological consequences of amending soils with bauxite residue/gypsum mixtures. Australian Journal of Soil Research 31:533–538

    Article  CAS  Google Scholar 

  • TAA. 2000. The Aluminum Association. Technology roadmap for bauxite residue treatment and utilization. The Aluminum Association, Washington, DC, 22 pp

    Google Scholar 

  • Tacey, W. H., D. P. Olsen, and G. H. M. Watson. 1977. Rehabilitation of mine wastes in a temperate environment. Pages 1–31 in Proceedings of the Annual Australian Mining Industry Council Environmental Workshop, Sept 1977, Sydney. Australian Mining Industry Council, Canberra

  • Thomann, C., and J. Portier. 1981. Research into the recovery of red mud by the introduction of vegetation. UNEP Industry and Environment 6–8

  • Von Philipsborn H., E. Kühnast. 1992. Gamma spectrometric characterisation of industrially used African and Australian bauxites and their red mud tailings. Radiation Protection Dosimetry 45:741–744

    Google Scholar 

  • Ward S. C. 1987. Reclaiming bauxite residue disposal areas in south-west Australia. In: T. Farrell (ed.), Mining rehabilitation ‘87. Australian Mining Industry Council, Canberra. Pages 61–70

    Google Scholar 

  • Ward S. C., G. C. Slessar, D. J. Glenister, P. S. Coffey. 1996. Environmental resource management practices of ALCOA in southwestern Australia. In: D. R. Mulligan (ed.), Environmental management in the Australian minerals and energy industries: principles and practices. UNSW Press, Sydney. Pages 383–402

    Google Scholar 

  • Whittington B. I., B. L. Fletcher, C. Talbot. 1998. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions. Hydrometallurgy 49:1–22

    Article  CAS  Google Scholar 

  • Williams D. J. 1996. Management of solid wastes. In: D. R. Mulligan (ed.), Environmental management in the Australian minerals and energy industries: principles and practices. UNSW Press, Sydney. Pages 157–188

    Google Scholar 

  • Wong, J. W. C. 1990. Sodium release characteristics and revegetation of fine bauxite refining residues (red mud). Ph.D. thesis, Murdoch University, Perth

  • Wong J. W. C., G. E. Ho. 1991. Effects of gypsum and sewage sludge amendment on physical properties of fine bauxite refining residue. Soil Science 152:326–332

    CAS  Google Scholar 

  • Wong J. W. C., G. E. Ho. 1993. Use of waste gypsum in the revegetation on red mud deposits: a greenhouse study. Waste Management and Research 11:249–256

    CAS  Google Scholar 

  • Wong J. W. C., G. E. Ho. 1995. Cation exchange behaviour of bauxite refining residues from Western Australia. Journal of Environmental Quality 24:461–466

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Alcan Gove, and the Australian Research Council Linkage program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal W. Menzies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehr, J.B., Fulton, I. & Menzies, N.W. Revegetation Strategies for Bauxite Refinery Residue: A Case Study of Alcan Gove in Northern Territory, Australia. Environmental Management 37, 297–306 (2006). https://doi.org/10.1007/s00267-004-0385-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-004-0385-2

Keywords

Navigation