Skip to main content

Advertisement

Log in

Using Wildlife as Receptor Species: A Landscape Approach to Ecological Risk Assessment

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

To assist risk assessors at the Department of Energy’s Savannah River Site (SRS), a Geographic Information System (GIS) application was developed to provide relevant information about specific receptor species of resident wildlife that can be used for ecological risk assessment. Information was obtained from an extensive literature review of publications and reports on vertebrate- and contaminant-related research since 1954 and linked to a GIS. Although this GIS is a useful tool for risk assessors because the data quality is high, it does not describe the species’ site-wide spatial distribution or life history, which may be crucial when developing a risk assessment. Specific receptor species on the SRS were modeled to provide an estimate of an overall distribution (probability of being in an area). Each model is a stand-alone tool consisting of algorithms independent of the GIS data layers to which it is applied and therefore is dynamic and will respond to changes such as habitat disturbances and natural succession. This paper describes this modeling process and demonstrates how these resource selection models can then be used to produce spatially explicit exposure estimates. This approach is a template for other large federal facilities to establish a framework for site-specific risk assessments that use wildlife species as endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. C. D. Apps B. N. McLellen T. A. Kinley J. P. Flaa (2001) ArticleTitleScale-dependent habitat selection by mountain caribou, Columbia mountains, British Columbia Journal of Wildlife Management 65 65–77

    Google Scholar 

  2. M. L. Arbogast (1999) The use of raccoons as bioindicators of radiocesium contamination Thesis, Rutgers University Piscataway, NJ

    Google Scholar 

  3. F. C. Bellrose K. L. Johnson T. U. Meyers (1964) ArticleTitleRelative value of natural cavities and nesting houses for wood ducks Journal of Wildlife Management 28 661–676

    Google Scholar 

  4. L. J. Blus C. J. Henny D. J. Hoffman R. A. Grove (1993) ArticleTitleAccumulation and effects of lead and cadmium on wood ducks near a mining and smelting complex in Idaho Ecotoxicology 2 139–154 Occurrence Handle10.1007/BF00119436

    Article  Google Scholar 

  5. C. S. Boring (2001) The interactions of home-range, habitat preference and contaminant burdens in relation to ecological risk for raccoon populations living near the borders of the Department of Energy’s Savannah River Site MS Thesis, Rutgers University Piscataway, NJ 84 pp.

    Google Scholar 

  6. J. Cairns Jr (1993) ArticleTitleWill there ever be a field of landscape toxicology Environmental Toxicology and Chemistry 12 609–610

    Google Scholar 

  7. J. Cairns Jr B. R. Niederlehner (1996) ArticleTitleDeveloping a field of landscape ecotoxicology Ecological Applications 6 790–796

    Google Scholar 

  8. G. N. Cameron S. R. Spencer (1981) ArticleTitle Sigmodon hispidus. Mammalian Species 158 1–9

    Google Scholar 

  9. Y. H. Chou (1997) Exploring spatial analysis in geographic information systems. 5th edition OnWord Press Albany, NY

    Google Scholar 

  10. D. R. Clark SuffixJr P. A. Ogasawara G. J. Smith H. M. Ohlendorf (1989) ArticleTitleSelenium accumulation by raccoons exposed to irrigation drainwater at Kesterson National Wildlife Refuge, California, 1986 Archives of Environmental Contamination and Toxicology 18 787–794 Occurrence Handle10.1007/BF01160292 Occurrence Handle2619319

    Article  PubMed  Google Scholar 

  11. Corsi, F. J. DeLeeuw, and A. Skidmore. 2000. Modeling Species Distribution with GIS. Pages 389–434 in L. Boitani and T. K. Fuller (eds.), Research techniques in animal ecology: Controversies and consequences. Columbia University Press, New York, NY.

  12. G. R. Costanzo T. T. Fendley J. R. Sweeney (1983) ArticleTitleWinter movements and habitat use by wood ducks in South Carolina Proceedings of the Annual Conference of the Southeastern Association of Fish Wildlife Agencies 37 67–78

    Google Scholar 

  13. C. E. Davis L. L. Janecek (1997) DOE research set-aside areas of the Savannah River Site. Publication SRO-NERP-25 Savannah River Ecology Laboratory Aiken, South Carolina

    Google Scholar 

  14. D. L. DeAngelis L. J. Gross M. A. Huston W. F. Wolff D. M. Flemming E. J. Comiskey S. M. Sylvester (1998) ArticleTitleLandscape modeling for everglades ecosystem restoration Ecosystems 1 64–75 Occurrence Handle10.1007/s100219900006

    Article  Google Scholar 

  15. R. D. Drobney L. H. Fredrickson (1979) ArticleTitleFood selection by wood ducks in relation to breeding status Journal of Wildlife Management 43 109–120

    Google Scholar 

  16. Elkie, P., R. Rempel, and A. Carr. 1999. Patch analyst user’s manual. Ontario Ministry of Natural Resources, Northwest Science and Technology, Thunder Bay, Ontario. TM-002. 16 pp + Appendices.

  17. K. F. Gaines D. Karapatakis G. R. Wein (1999) Wildlife survey for ecological risk assessment activities on the SRS. CD-ROM SREL-59, UC-66-e Savannah River Ecology Laboratory Aiken, SC

    Google Scholar 

  18. K. F. Gaines C. G. Lord C. S. Boring I. L. Brisbin Jr M. Gochfeld J. Burger (2000b) ArticleTitleRaccoons as potential vectors of radionuclide contamination to human food chains from a nuclear industrial site Journal of Wildlife Management 64 199–208

    Google Scholar 

  19. Gaines, K. F., H. Wiggins-Brown, D. J. Karapatakis, G. R. Wein, and I. L. Brisbin Jr. 2000a. Enhancement of the Wildlife Survey GIS Database. Final report to Westinghouse Savannah River Company—Environmental restoration.

  20. Gaines, K. F. 2001. Spatial modeling of the raccoon (Procyon lotor) for ecological risk assessment activities at the Department of Energy’s Savannah River Site. CD ROM SREL-62, UC-66e. Savannah River Ecology Laboratory, Aikena South Carolina.

  21. K. F. Gaines (2002) A spatially explicit model of the Wild Hog (Sus scrofa) for ecological risk assessment activities at the Department of Energy’s Savannah River Site. CD ROM SREL-68, UC-66e Savannah River Ecology Laboratory Aiken, South Carolina

    Google Scholar 

  22. K. F. Gaines (2003) Spatial modeling of receptor species for ecological risk assessment activities on the Department of Energy’s Savannah River Site. Ph.D. Dissertation University of South Carolina Columbia, South Carolina 146 pp

    Google Scholar 

  23. Gaines, K. F., and A. L. Bryan Jr. 2003. A spatially explicit model for wading birds for ecological risk assessment activities at the Department of Energy’s Savannah River Site. CD ROM SREL-69, UC-66e. Savannah River Ecology Laboratory, Aiken, South Carolina.

  24. Gardner, R. H. Jr. 1975. Movement and distribution of confined and freely growing populations of cotton rats (Sigmodon hispidus). Ph.D. thesis, North Carolina State, Raleigh, NC, 71 pp.

  25. S. D. Gehrt E. K. Fritzell (1998) ArticleTitleResource distribution, female home range dispersion and male spatial interactions: Group structure in a solitary carnivore Animal Behaviour 55 1211–1227 Occurrence Handle10.1006/anbe.1997.0657 Occurrence Handle9632506

    Article  PubMed  Google Scholar 

  26. T. F. Glueck W. R. Clark R. D. Andrews (1988) ArticleTitleRaccoon movement and habitat use during the fur harvest season Wildlife Society Bulletin 16 6–11

    Google Scholar 

  27. Golley, F. B., J. B. Gentry, L. D. Caldwell and L. B. Davenport, Jr. 1965. Number and variety of small mammals on the AEC Savannah River Plant. J Mammal 46:1–18.

  28. R. L. Graham C. T. Hunsaker R. V. O’Neill B. L. Jackson (1991) ArticleTitleEcological risk assessment at the regional scale Ecological Applications 1 196–206

    Google Scholar 

  29. P. J. Heglund (2002) Foundations of species-environmental relations. Pages 000–000 J. M. Scott P. J. Heglund M. L. Morrison J. B. Haufler M. G. Raphael W. A. Wall F. B. Samson (Eds) Predicting species occurrences: Issues of accuracy and scale Island Press Washington, D.C, Chapter 1 35–41

    Google Scholar 

  30. G. R. Hepp R. A. Kennamer (1992) ArticleTitleCharacteristics and consequences of nest-site fidelity in wood ducks Auk 109 812–818

    Google Scholar 

  31. C. O. Hoffmann J. L. Gottschang (1977) ArticleTitleNumbers, distribution, and movements of a raccoon population in a suburban residential community Journal of Mammalogy 58 623–636

    Google Scholar 

  32. C. R. Hunsaker R. L. Graham G. W. Suter II R. V. O’Neill L. W. Barnthouse R. H. Gardner (1990) ArticleTitleAssessing ecological risk on a regional scale Environmental Management 14 325–332

    Google Scholar 

  33. T. W. Hughs (1985) Home range, habitat utilization, and pig survival of feral swine on the Savannah River Plant. M.S. Thesis Clemson University Clemson, South Carolina

    Google Scholar 

  34. M. E. Jensen P. S. Bourgerson (2001) A guidebook for integrated ecological assessments Springer-Verlag New York, NY

    Google Scholar 

  35. C. A. Johnston R. J. Naiman (1987) ArticleTitleBoundary dynamics at the terrestrial-aquatic interface: The influence of beaver and geomorphology Landscape Ecology 1 47–57

    Google Scholar 

  36. R. J. Kendall P. N. Smith (2003) ArticleTitleWildlife toxicology revisited Environmental Science and Technology 37 179–18 Occurrence Handle10.1021/es020621n

    Article  Google Scholar 

  37. Kennamer, R. A., and K. F. Gaines. 2002. Habitat specific models of wood duck nest box use for the Department of Energy’s Savannah River Site. Final report to Westinghouse Savannah River Company—Environmental Restoration.

  38. R. A. Kennamer G. R. Hepp (2000) ArticleTitleIntegration of research with long-term monitoring: Breeding wood ducks on the Savannah River Site Studies in Avian Biology 21 39–49

    Google Scholar 

  39. A. T. Khan S. J. Thompson H. W. Mielke (1995) ArticleTitleLead and mercury levels in raccoons from Macon County, Alabama Bulletin of Environmental Contamination and Toxicology 54 812–816 Occurrence Handle7647494

    PubMed  Google Scholar 

  40. J. C. Kurz R. L. Marchinton (1972) ArticleTitleRadiotelemetry studies of feral hogs in South Carolina Journal of Wildlife Management 36 1240–1248

    Google Scholar 

  41. J. A. Kushlan (1978) Feeding ecology of wading birds. Pages 249–297 A. Sprint IV J. C. Ogden S. Winckler (Eds) Wading Birds National Audubon Society Research report no. 7 New York, NY

    Google Scholar 

  42. J. A. Kushlan (1993) ArticleTitleColonial waterbirds as bioindicators of environmental change Colonial Waterbirds 16 223–251

    Google Scholar 

  43. Looney, B. B., C. A. Eddy, M. Ramdeen, J. Pickett, V. A. Rogers, P. A. Shirley, and M. T. Scott. 1990. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site. Westinghouse Savannah River Company Publication WSRC-RP-90-0464, Aiken, South Carolina.

  44. J. Lotze S. Anderson (1979) ArticleTitle Procyon lotor. Mammalian Species 119 1–8

    Google Scholar 

  45. B. F. J. Manly (1998) Randomization, bootstrap and Monte Carlo methods in biology—2nd edition Chapman & Hall London

    Google Scholar 

  46. B. F. J. Manly L. L. McDonald D. L. Thomas (1993) Resource selection by animals: Statistical design and analysis for field studies Chapman & Hall New York, New York

    Google Scholar 

  47. K. McGairal B. Marks (1993) FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Forest Science Department Oregon State University Corvallis, Oregon

    Google Scholar 

  48. J. W. Mietelski P. Gaca M. Jasinska (2000) ArticleTitlePlutonium and other alpha-emitters in bones of wild, herbivorous animals from north-eastern Poland Applied Radiation and Isotopes 53 251–257 Occurrence Handle10.1016/S0969-8043(00)00140-8 Occurrence Handle10879870

    Article  PubMed  Google Scholar 

  49. D. J. Mladenoff T. A. Sickley R. G. Haight A. D. Wydeven (1995) ArticleTitleA regional landscape analysis and prediction of favorable Gray Wolf habitat in the Northern Great Lakes region Conservation Biology 9 279–294 Occurrence Handle10.1046/j.1523-1739.1995.9020279.x

    Article  Google Scholar 

  50. J. Neter W. Wasserman M. H. Kutner (1990) Applied linear statistical models: Regression analysis of variance, and experimental design—3rd edition Richard D. Irwin Inc Homewood, Illinois 1181 pp.

    Google Scholar 

  51. M. C. Newman C.L.(eds.). Strojan (1998) Risk assessment: Logic and measurements Ann Arbor Press Chelsea, Michigan 352 pp.

    Google Scholar 

  52. Novak, J. M., Peles J. D, and K. F. Gaines. 2002. A spatially explicit model for the cotton rat (Sigmodon hispidus) habitat preference on the Department of Energy’s Savannah River Site. CD ROM SREL-62, UC-66e. Savannah River Ecology Laboratory.

  53. R. V. O’Neill J. R. Krummel R. H. Gardner G. Sugihara B. Jackson D. L. DeAngelis B. T. Milne M. G. Turner B. Zygmunt S. W. Christionsen V. H. Dale R. L. Graham (1988) ArticleTitleIndices of landscape pattern Landscape Ecology 1 153–162 Occurrence Handle10.1007/BF00162741

    Article  Google Scholar 

  54. Pinder, J. E. III, K. K. Guy, T. E. Rae, and D. J. Karapatakis. 1998. Development of a 1997 habitat map for the Savannah River Site; Final report to Westinghouse Savannah River Company.

  55. T. Punshon K. F. Gaines R. A. Jenkins Jr (2003) ArticleTitleBioavailability and trophic transfer of sediment bound Ni and U in a Southeastern wetland system Archives of Environmental Contamination and Toxicology 44 30–35 Occurrence Handle10.1007/s00244-002-1213-4 Occurrence Handle12434216

    Article  PubMed  Google Scholar 

  56. B. D. Reinhart (2003) The use of small mammals as indicators of heavy metal bioavailability in a contaminated riparian zone. M. S. Thesis University of Georgia Athens, Georgia 50 pp.

    Google Scholar 

  57. T. E. Ross (1987) ArticleTitleA comprehensive bibliography of the Carolina bays literature Journal of Elisha Mitchell Scientific Society 103 28–42

    Google Scholar 

  58. Sample, B. E., and Suter, G. W. II. 1994. Estimating exposure of terrestrial wildlife to contaminants. Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. ES/ER/TM-125.

  59. D. Santiago M. Motas-Guzman A. Reja P. Maria-Mojica B. Rodero A. J. Garcia-Fernandez (1998) ArticleTitleLead and cadmium in red deer and wild boar from Sierra. Morena Mountains (Andalusia, Spain) Bulletin of Environmental Contamination and Toxicology 61 730–737 Occurrence Handle10.1007/s001289900822 Occurrence Handle9871001

    Article  PubMed  Google Scholar 

  60. J. W. Snodgrass (1996) The influence of beaver ponds on the temporal and spatial dynamics of southeastern stream fish assemblages. Ph.D. Dissertation University of Georgia Athens, Georgia 165 pp.

    Google Scholar 

  61. Snodgrass, J. W., Jakes A., Gaines K. F., and J. Burger. 2002. Spatial explicit model of beaver habitat preference in SRS streams. CD ROM SREL-63, UC-66e. Savannah River Ecology Laboratory.

  62. H. L. Stribling I. L. Brisbin Jr J. R. Sweeney (1986) ArticleTitleRadiocesium concentrations in two populations of feral hogs Health Physics 50 852–854 Occurrence Handle3710796

    PubMed  Google Scholar 

  63. G. W. Suter II (1990) ArticleTitleEnd points for regional ecological risk assessment Environmental Management 14 9–23

    Google Scholar 

  64. F. B. Taub (1989) ArticleTitleStandardized aquatic microcosms Environmental Science and Technology 23 1064–1066 Occurrence Handle10.1021/es00067a601

    Article  Google Scholar 

  65. L. Tichendorf (2001) ArticleTitleCan landscape indices predict ecological processes consistently Landscape Ecology 16 235–254 Occurrence Handle10.1023/A:1011112719782

    Article  Google Scholar 

  66. J. C. Trexler J. Travis (1993) ArticleTitleNontraditional regression analyses Ecology 74 1629–1637

    Google Scholar 

  67. M. G. Turner R. H.(eds.) Gardner (1990) Quantitative methods in landscape ecology Springer-Verlag New York, New York 536 pp.

    Google Scholar 

  68. U.S. Environmental Protection Agency. 1993. Wildlife exposure factors handbook volumes I and II. EPA/600/R-93/187, Washington, DC.

  69. U. S. Environmental Protection Agency. 1997. Ecological risk assessment guidance for superfund: Process for designing and conducting ecological risk assessments. EPA/630/R-021011, Washington, DC.

  70. USFWS. 1981. Standards for the development of habitat suitability index models. Ecological service manual 103 ESM, release number 1-81. U.S. Department of the Interior, Fish and Wildlife Service, Division of Ecological Services, Government Printing Office, Washington, DC.

  71. K. Vermeer J. A. J. Thompson (1992) ArticleTitleArsenic and copper residues in waterbirds and their food down inlet from the Island Copper Mill Bulletin of Environmental Contamination and Toxicology 48 733–738 Occurrence Handle10.1007/BF00195995 Occurrence Handle1504519

    Article  PubMed  Google Scholar 

  72. S. Walker M. Sunquist (1997) ArticleTitleMovement and spatial organization of raccoons in north-central Florida Florida Field Naturalist 25 11–21

    Google Scholar 

  73. W. D. Webster J. F. Parnell W. C. Biggs Jr (1985) Mammals of the Carolinas, Virginia and Maryland University of North Carolina Press Chape Hill, North Carolina

    Google Scholar 

  74. White, D. L., and K. F. Gaines. 2000. The Savannah River Site: Site description, land use and management history. Pages 8–17 in J. B. Dunning and J. C. Kilgo (eds.). Avian studies at the Savannah River Site: A model for integrating basic research and long- term management. Studies in avian biology 21. Cooper Ornithological Society, Camarillo, CA, USA

  75. T. D. Williams E. G. Cooch R. L. Jefferies F. Cooke (1993) ArticleTitleEnvironmental degradation, food limitation and reproductive output: Juvenile survival in lesser snow geese Journal of Animal Ecology 62 766–777

    Google Scholar 

Download references

Acknowledgments

This project was funded through the Financial Assistance Award DE-FC09-96SR18546 from the U.S. Department of Energy to the University of Georgia Research Foundation. We thank T. G. Chandler, H. N. McKellar, and M. E. Hodgson for reviewing earlier versions of the manuscript for this paper. We also thank J. M. Novak, J. Snodgrass, A. L. Bryan, Jr., R. A. Kennamer, and D. J. Karapatakis, for their contributions to the receptor species model development.

Author information

Authors and Affiliations

Authors

Additional information

Current address: Biology Department, University of South Dakota, Vermillion, SD 57069

Appendix:

Appendix:

Receptor species list compiled for use in ecological risk assessment activities on the Department of Energy’s Savannah River Site (SRS) that use wildlife as endpoints using EPA criteria (USEPA 1997)a

I. Birds (21 species)

Common Name

Scientific Name

American Coot

Fulica americana

American Crow

Corvus brachyrhynchos

Anhinga

Anhinga anhinga

Bachman’s Sparrow

Aimophila aestivalis

Bald Eagle

Haliaeetus leucocephalus

Barn Swallow

Hirundo rustica

Black Vulture

Coragyps atratus

Eastern Bluebird

Sialia sialis

Eastern Screech Owl

Otus asio

Great Blue Heron

Ardea herodias

Kingfisher

Megaceryle alcyon

Mallard Duck

Anas platyrynchos

Mourning Dove

Zenaida macroura

Northern Mockingbird

Mimus polyglottos

Pied-billed Grebe

Podilymbus podiceps

Red-cockaded Woodpecker

Picoides borealis

Red-tailed Hawk

Buteo jamaicensis

Ring-necked Duck

Aythya collaris

Wild Turkey

Meleagris gallopavo

Wood Duck

Aix sponsa

Wood Stork

Mycteria americana

II. Mammals (17 species)

Common Name

Scientific Name

Beaver

Castor canadensis

Bobcat

Felis rufus

Cotton Mouse

Peromyscus gossypinus

Cotton Rat

Sigmodon hispidus

Eastern Cottontail

Sylvilagus floridanus

Eastern Coyote

Canis latrans

Eastern Mole

Scalopus aquaticus

Feral Hog

Sus scrofa

Gray Fox

Urocyon cinereoargenteus

Gray Squirrel

Sciurus carolinensis

Mink

Mustela vison

Raccoon

Procyon lotor

Seminole Bat

Lasiurus seminolis

Southern Flying Squirrel

Glaucomys volans

Southern Short-tailed Shrew

Blarina carolinensis

Virginia Opossum

Didelphis virginiana

White-tailed Deer

Odocoileus virginianus

III. Reptiles and amphibians (16 species)

Common Name

Scientific Name

American Alligator

Alligator mississippiensis

Brown Water Snake

Nerodia taxispilota

Bullfrog

Rana catesbeiana

Common Snapping Turtle

Chelydra serpentina

Eastern Box Turtle

Terrapene carolina

Eastern Mud Turtle

Kinosternon subrubrum

Gray Rat Snake

Elaphe obsoleta

Green Anole

Anolis carolinensis

Green Treefrog

Hyla cinerea

Ground Skink

Scincella laterale

Leopard Frog

Rana utricularia

Marbled Salamander

Ambystoma opacum

Mole Salamander

Ambystoma talpoideum

Mudpuppy

Necturus maculosus

Southern Toad

Bufo terrestris

Yellow-bellied Slider

Trachemys scripta

IV. Fish (16 species)

Common Name

Scientific Name

Bluegill

Lepomis macrochirus

Bluehead Chub

Nocomis leptocephalus

Channel Catfish

Ictalurus punctatus

Dusky Shiner

Notropis cummingsae

Eastern Mosquitofish

Gambusia holbrooki

Gizzard Shad

Dorosoma cepedianum

Lake Chubsucker

Erimyzon sucetta

Largemouth Bass

Micropterus salmoides

Redbreast Sunfish

Lepomis auritus

Sailfin Shiner

Pteronotropis hypselopterus

Shortnose Sturgeon

Acipenser brevirostrum

Spotted Sucker

Minytrema melanops

Tadpole Madtom

Noturus gyrinus

Tessellated Darter

Etheostoma olmstedi

Yellow Bullhead

Ameiurus natalis

Yellowfin Shiner

Notropis lutipinnis

  1. aReceptor species chosen from this list met at least one or more of these criteria. The goal was to use these criteria to develop a list that was appropriate for habitats and the contaminant concerns of the SRS. The list is taxonomically diverse, sensitive to rare species, and includes abundant species that could be used both as surrogates and focal receptors. Because hunting is allowed on and near the SRS, every attempt was made to include game species for human health assessment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaines, K., Porter, D., Dyer, S. et al. Using Wildlife as Receptor Species: A Landscape Approach to Ecological Risk Assessment. Environmental Management 34, 528–545 (2004). https://doi.org/10.1007/s00267-004-0261-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-004-0261-0

Navigation