Skip to main content

Advertisement

Log in

Assessing the Effects of Alternative Setback Channel Constraint Scenarios Employing a River Meander Migration Model

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

River channel migration and cutoff events within large river riparian corridors create heterogeneous and biologically diverse landscapes. However, channel stabilization (riprap and levees) impede the formation and maintenance of riparian areas. These impacts can be mitigated by setting channel constraints away from the channel. Using a meander migration model to measure land affected, we examined the relationship between setback distance and riparian and off-channel aquatic habitat formation on a 28-km reach of the Sacramento River, California, USA. We simulated 100 years of channel migration and cutoff events using 11 setback scenarios: 1 with existing riprap and 10 assuming setback constraints from about 0.5 to 4 bankfull channel widths (bankfull width: 235 m) from the channel. The percentage of land reworked by the river in 100 years relative to current (riprap) conditions ranged from 172% for the 100-m constraint setback scenario to 790% for the 800-m scenario. Three basic patterns occur as the setback distance increases due to different migration and cutoff dynamics: complete restriction of cutoffs, partial restriction of cutoffs, and no restriction of cutoffs. Complete cutoff restriction occurred at distances less than about one bankfull channel width (235 m), and no cutoff restriction occurred at distances greater than about three bankfull widths (∼700 m). Managing for point bars alone allows the setbacks to be narrower than managing for cutoffs and aquatic habitat. Results suggest that site-specific “restriction of cutoff” thresholds can be identified to optimize habitat benefits versus cost of acquired land along rivers affected by migration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Literature Cited

  • Avery E. R., E. R. Micheli, E. W. Larsen. 2003. River channel cut-off dynamics, Sacramento River, California, USA. EOS Transactions Amercian Geographical Union 84(46): Fall Meeting Supplement: H52A–1181.

  • Baker W. L., G. M. Walford. 1995. Multiple stable states and models of riparian vegetation succession on the Animas River, Colorado. Annals of the Association of American Geographers 85:320–338

    Article  Google Scholar 

  • Bayley P. B. 1995. Understanding large river floodplain ecosystems. BioScience 45:153–158

    Google Scholar 

  • Bayley P. B., H. W. Li. 1992. Riverine fishes. In: P. Calow, G. E. Petts (eds.). The rivers handbook. Blackwell Scientific, Oxford. pp: 251–281

    Google Scholar 

  • Beck S., D. A. Melfi, K. Yalamanchili. 1984. Lateral migration of the Genesee River, New York. In: C. M. Elliott (ed.). River meandering. American Society of Civil Engineers, New York. pp: 510–517

    Google Scholar 

  • Bozkurt, S., P. Dekens, R. Gartland, J. Gragg, J. Lawyer, and M. McGoogan. 2000. Evaluation of setback levees on the Sacramento River. University of California, Santa Barbara, Santa Barbara, CA. http://www.bren.ucsb.edu/research/

  • Brice J. C. 1974. Evolution of meander loops. Geological Society of America Bulletin 85:581–586

    Article  Google Scholar 

  • Brice J. C. 1977. Lateral migration of the middle Sacramento River, California. USGS Water-Resources Investigations 77-43:1–51.

    Google Scholar 

  • Buer, K., D. Forwalter, M. Kissel, and B. Stohler. 1989. The middle Sacramento River: Human impacts on physical and ecological processes along a meandering river. USDA Forest Service General Technical Report, pp. 22–32

  • CALFED. 2000. Final programmatic environmental impact statement environmental impact report. CALFED Bay–Delta Program, Sacramento, CA

  • California Department of Water Resources. 1995. Memorandum report: Sacramento River meander belt future erosion investigation. DWR 155. The Resources Agency, Department of Water Resources, Sacramento, CA

  • CDWR. 1994. Sacramento River bank erosion investigation memorandum progress report. State of California, The Resources Agency, Department of Water Resources, Northern District

  • Chapin F. S., III, B. H. Walker, R. J, Hobbs, D. U. Hooper, J. H. Lawton, O. E. Sala, D. Tilman. 1997. Biotic control over the functioning of ecosystems. Science 277:500–504

    CAS  Google Scholar 

  • Dixon, D., Stromberg, J. C., Fremier, A. K. and Larsen,E. W. 2004. Projecting the effects of environmental change on riparian ecosystem in the Southwest: The upper San Pedro as a case study. School of Life Sciences, Arizona State University, Tucson, AZ

    Google Scholar 

  • Dwyer J. P., D. Wallace, D. R. Larsen. 1997. Value of woody river corridors in levee protection along the Missouri River 1993. Journal of American Water Resources Association 33:481–489

    CAS  Google Scholar 

  • Engelund F., E. Hansen. 1967. A monograph on sediment transport in alluvial streams. Teknisk Forlag, Copenhagen

    Google Scholar 

  • Environmental Systems Research Institute. 2004. ArcGIS 9.0. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Fischer K. J. 1994. Fluvial Geomorphology and flood control strategies: Sacramento River, California. In: S. A. Schumm, B. R. Winkley (ed.). The variability of large alluvial rivers. ASCE Press, New York. pp: 115–139

    Google Scholar 

  • Fremier, A. K. 2003. Floodplain age modeling techniques to analyze channel migration and vegetation patch dynamics on the Sacramento River, CA. Masters thesis. University of California, Davis, Davis, CA

  • Furbish D. J. 1988. River-bend curvature and migration: How are they related? Geology 16:752–755

    Article  Google Scholar 

  • Furbish D. J. 1991. Spatial autoregressive structure in meander evolution. Geological Society of America Bulletin 103:1576–1589

    Article  Google Scholar 

  • Furbish D. J. 1997. Fluid physics in geology. Oxford University Press, Oxford

    Google Scholar 

  • Gergel S. E., M. D. Dixon, M. G. Turner. 2002. sConsequences of human-altered floods: Levees, floods, and floodplain forests along the Wisconsin River. Ecological Applications 12:1755–1770

    Google Scholar 

  • Golet, G. H., M. D. Roberts, E. W. Larsen, R. A. Luster, R. Unger, G. Werner, and G. G. White. In Press. Assessing societal impacts when planning restoration of large alluvial rivers: A case study of the Sacramento River Project, California. Environmental Management

  • Greco, S. E., and C. A. Alford. 2003. Historical channel mapping from aerial photography of the Sacramento River, Colusa to Red Bluff, California: 1937 to 1997. Technical report prepared for California Department of Water Resources, Northern District, Red Bluff, California. Landscape Analysis and Systems Research Laboratory, Department of Environmental Design, University of California, Davis, CA

  • Gutreuter S., A. D. Bartels, K. Irons, M. B. Sandheinrich. 1999. Evaluation of the flood-pulse concept based on statistical models of growth of selected fishes of the Upper Mississippi River system. Canadian Journal of Fisheries and Aquatic Sciences 56:2282–2291

    Article  Google Scholar 

  • Harwood, D. S., and E. J. Helley. 1987. Late Cenozoic Tectonism of the Sacramento Valley, California. Professional Paper 1359. US Geological Survey

  • Hooke J. M. 1984. Changes in river meanders: A review of techniques and results of analysis. Progress in Physical Geography 8:473–508

    Google Scholar 

  • Hooke J. M., C. E. Redmond. 1992. Causes and nature of river planform change. In: P. Billi, others (eds.). Dynamics of gravel-bed rivers. John Wiley & Sons, London. pp: 557–571

    Google Scholar 

  • Howard A. D. 1992. Modeling channel migration and floodplain sedimentation in meandering streams. In: P. A. Carling, G. E. Petts (eds.). Lowland floodplain rivers: Geomorphological perspectives. John Wiley & Sons, New York. pp: 1–41

    Google Scholar 

  • Howard A. D. 1996. Modeling channel evolution and floodplain morphology In: M. G. Anderson, others (eds.). Floodplain processes. John Wiley & Sons, New York. pp: 15–62

    Google Scholar 

  • Hupp C. R., W. R. Osterkamp. 1996. Riparian vegetation and fluvial geomorphic processes. Geomorphology 14:277–295

    Article  Google Scholar 

  • Hydrologic Engineering Center–River Analysis System. 2003. HEC-RAS Software 3.2.1. US Army Corps of Engineers, Davis, CA

  • Ikeda S., G. Parker, K. Sawai. 1981. Bend theory of river meanders. Part 1. Linear development. Journal of Fluid Mechanics 112:363–377

    Article  Google Scholar 

  • Johannesson, H., and G. Parker. 1985. Computer simulated migration of meandering rivers in Minnesota. Project No. 242. University of Minnesota, St. Anthony Falls, Hydraulic Laboratory, Minneapolis, MN

  • Johannesson, H., and G. Parker. 1989, Linear theory of river meanders. In S. Ikeda and G. Parker (eds.). River meandering. American Geophysical Union, Washington, DC

  • Johnson W. C., R. L. Burgess, W. R. Keammerer. 1976. Forest overstory vegetation and environment of the Missouri River floodplain in North Dakota, Ecological Monographs 46:59–84

    Google Scholar 

  • Junk, J. W., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river–floodplain systems. Canadian Journal of Fish and aquatic Science 106: 110–127

    Google Scholar 

  • Knighton D. 1998. Fluvial forms & processes: A new perspective. John Wiley & Sons, New York

    Google Scholar 

  • Larsen, E. W. 1995. The mechanics and modeling of river meander migration. PhD dissertation. University of California, Berkeley, CA

  • Larsen E. W., S. E. Greco. 2002. Modeling channel management impacts on river migration: A case study of Woodson Bridge State Recreation Area, Sacramento River, California, USA. Environmental Management 30:209–224

    Article  Google Scholar 

  • Larsen, E. W., E. Anderson, E. Avery, and K. Dole. 2002. The controls on and evolution of channel morphology of the Sacramento River: A case study of river miles 201–185. The Nature Conservancy, Chico, CA

  • Larsen, E. W., A. K. Fremier, and E. H. Girvetz. In Press. Modeling the effects of flow regulation scenarios on river channel migration on the Sacramento River, CA, USA. Journal of American Water Resources Association

  • Leopold L. B., M. G. Wolman, J. P. Miller. 1964. Fluvial processes in geomorphology. W. H. Freeman, San Francisco

    Google Scholar 

  • Limm M. P., M. P. Marchetti. 2003. Contrasting patterns of juvenile Chinook salmon (Oncorhynchus tshawytschaw) growth, diet, and prey densities in off-channel and main stem habitats on the Sacramento River. The Nature Conservancy, Chico, CA

    Google Scholar 

  • MacDonald, T. E., G. Parker, and D. P. Leuthe. 1991. Inventory and analysis of stream meander problems in Minnesota. St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, MN

  • Mahoney J. M., S. B. Rood. 1998. Streamflow requirements for cottonwood seedling recruitment: An integrative model. Wetlands 18:634–645

    Google Scholar 

  • Merritt D. M., D. J. Cooper. 2000. Riparian vegetation and channel change in response to river regulation: A comparative study of regulated and unregulated streams in the Green River Basin, USA. Regulated Rivers: Research & Management 16:543–564

    Google Scholar 

  • Micheli E. R., J. W. Kirchner, E. W. Larsen. 2004. Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, Central Sacramento River, California, USA. River Research and Applications 20:537–548

    Article  Google Scholar 

  • Morken I., G. M. Kondolf. 2003. Evolution assessment and conservation strategies for Sacramento River oxbow habitats. The Nature Conservancy, Chico, CA

    Google Scholar 

  • Naiman R. J., H. Décamps, M. Pollock. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3:209–212

    Article  Google Scholar 

  • National Research Council. 2002. Riparian areas: Functions and strategies for management. National Academy Press, Washington, DC

    Google Scholar 

  • Parker G., E. D. Andrews. 1985. Sorting of bed load sediment by flow in meander bends. Water Resources Research 21:1361–1373

    Google Scholar 

  • Pinter, N. 2005. One step forward, two steps back on U.S. floodplains. Science 308:207–208

    Article  CAS  Google Scholar 

  • Pizzuto J. E., T. S. Mecklenburg. 1989. Evaluation of a linear bank erosion equation. Water Resources Research No. 5:1005–1013.

    Google Scholar 

  • Poff L. N., J. D Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, J. C. Stromberg. 1997. The natural flow regime. BioScience 47:769–784

    Google Scholar 

  • Power M. E., G Parker, W. E. Dietrich, A. Sun. 1995. How does floodplain width affect floodplain river ecology? A preliminary exploration using simulations. Geomorphology 13:301–317

    Article  Google Scholar 

  • Richter B. D., H. E. Richter. 2000. Prescribing flood regimes to sustain riparian ecosystems along meandering rivers. Conservation Biology 14:1467–1478

    Article  Google Scholar 

  • Robertson, K. G. 1987. Paleochannels and recent evolution of the Sacramento River, California. Master of Science Thesis. Earth Science and Natural Resources, University of California, Davis, CA

  • Sacramento River Advisory Council. 1998. Sacramento River conservation area handbook. California Department of Water Resources, Sacramento, CA

  • Schiemer F., M Zalewski. 1992. The importance of riparian ecotones for diversity and productivity of riverine fish communities. Netherlands Journal of Zoology 42:323–335

    Google Scholar 

  • Scott M. L., J. M. Friedman, G. T. Auble. 1996. Fluvial process and the establishment of bottomland trees. Geomorphology 14:327–339

    Article  Google Scholar 

  • Shields F. D., Jr., R. R. Copeland, P. C. Klingeman, M. W. Doyle, A. Simon. 2003. Design for stream restoration. Journal of Hydrauli Engineering 129:575–584

    Article  Google Scholar 

  • Strahan J. 1984. Regeneration of riparian forests of the Central Valley. In: R. E. Warner, K. M. Hendrix (eds.). California riparian ecosystems. University of California Press, Berkeley, CA. pp: 58–67

    Google Scholar 

  • Stromberg J. C. 2001. Restoration of riparian vegetation in the south-western United States: Importance of flow regimes and fluvial dynamism. Journal of Arid Environments 49:17–34

    Article  Google Scholar 

  • Sun T., P. Meakin, T. Jossang. 2001. A computer model for meandering rivers with multiple bed load sediment sizes 1. Theory. Water Resources Researgh 37:2227–2241

    Google Scholar 

  • Tobin G. A. 1995. The levee love affair: A stormy relationship. Water Resources Bulletin 31:359–367

    Google Scholar 

  • Tockner K., J. A. Stanford. 2002. Riverine flood plains: Present state and future trends. Environmental Conservation 29:308–330

    Article  Google Scholar 

  • US Department of Agriculture. 2001. Stream corridor restoration: Principles, process and practices. The Federal Interagency Stream Restoration Working Group, USDA. Available from http://www.usda.gov/stream_restoration

  • Vitousek P. M., H. A Mooney, J. Lubchenco, J. M. Melillo. 1997. Human domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Water Engineering and Technology Inc. 1988. Geomorphic analysis of the Sacramento River: Draft report. DACWO5-87-C-0084, Water Engineering and Technology, Inc., US Army Corps of Engineers, Sacramento, CA

  • WET. 1988. Geomorphic analysis of the Sacramento River: Draft report. DACWO5-87-C-0084. Water Engineering and Technology, Inc., US Army Corps of Engineers, Sacramento, CA

  • Wolman M. G., J. P. Miller. 1959. Magnitude and frequency of forces in geomorphic processes. Journal of Geology 68:54–74

    Google Scholar 

Download references

Acknowledgments

This research was conducted under CALFED grant ERP 99-N18. Insightful review comments by P. Diplas, N. Allmendinger, and an anonymous reviewer improved the manuscript. We also gratefully acknowledge the review contributions of Daniel Efseaff, Steve Greco, Lisa Micheli, and Alex Young. We gratefully acknowledge Brian Morgan for help with the figures and Kathleen Wong for editorial assistance. We gratefully acknowledge the unfailing inspiration and continued support of Stacy Cepello, of the California Department of Water Resources, without whom this work would have been impossible. The first author acknowledges Harry K. Roberts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, E.W., Girvetz, E.H. & Fremier, A.K. Assessing the Effects of Alternative Setback Channel Constraint Scenarios Employing a River Meander Migration Model. Environmental Management 37, 880–897 (2006). https://doi.org/10.1007/s00267-004-0220-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-004-0220-9

Keywords

Navigation