Environmental Management

, Volume 33, Issue 4, pp 507–518 | Cite as

Carbon Management Response Curves: Estimates of Temporal Soil Carbon Dynamics

  • Tristram O. West
  • Gregg Marland
  • Anthony W. King
  • Wilfred M. Post
  • Atul K. Jain
  • Kenneth Andrasko


Measurement of the change in soil carbon that accompanies a change in land use (e.g., forest to agriculture) or management (e.g., conventional tillage to no-till) can be complex and expensive, may require reference plots, and is subject to the variability of statistical sampling and short-term variability in weather. In this paper, we develop Carbon Management Response (CMR) curves that could be used as an alternative to in situ measurements. The CMR curves developed here are based on quantitative reviews of existing global analyses and field observations of changes in soil carbon. The curves show mean annual rates of soil carbon change, estimated time to maximum rates of change, and estimated time to a new soil carbon steady state following the initial change in management. We illustrate how CMR curves could be used in a carbon accounting framework while effectively addressing a number of potential policy issues commonly associated with carbon accounting. We find that CMR curves provide a transparent means to account for changes in soil carbon accumulation and loss rates over time, and also provide empirical relationships that might be used in the development or validation of ecological or Earth systems models.


  1. 1.
    Bouwman, A. F. 1994Direct emissions of nitrous oxide from agricultural soils. RIVM report No. 773004004National Institute of Public Health and the EnvironmentBilthoven, the NetherlandsGoogle Scholar
  2. 2.
    Canada. 1998. Methodological Issues, Inventories, and Uncertainties. Paper No. 1. UNFCCC, Subsidiary Body for Scientific and Technological Advice. [Available at http://unfccc.int/resource/docs/1998/sbsta/misc06a01.pdf].Google Scholar
  3. 3.
    Conant, R. T., Paustian, K., Elliott, E. T. 2001Grassland management and conversion into grassland: effects on soil carbon.Ecological Applications11343355Google Scholar
  4. 4.
    Davidson, E. A., Ackerman, I. L. 1993Changes in soil carbon inventories following cultivation of previously untilled soils.Biogeochemistry20161193Google Scholar
  5. 5.
    Detwiler, R. P. 1986Land use change and the global carbon cycle: the role of tropical soils.Biogeochemistry26793Google Scholar
  6. 6.
    Food and Agriculture Organization. 2001. Global estimates of gaseous emissions of NH3, NO, and N2O from agricultural land. International Fertilizer Industry Association, FAO, Rome, Italy, 106 pp.Google Scholar
  7. 7.
    Heath, L. S., Kimble, J. M., Birdsey, R. A., Lal, R. 2003

    The potential of U.S. forest soils to sequester carbon.

    Kimble,  J. M.Heath, L. S.Birdsey, R. A.Lal, R. eds. The potential for U.S. forest soils to sequester carbon and mitigate the greenhouse effect.CRC PressNew York385392
    Google Scholar
  8. 8.
    Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A., Maskell, K. 1996Climate Change 1995—The Science of Climate Change.Cambridge University PressNew YorkGoogle Scholar
  9. 9.
    Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A. 2001Climate Change 2001: The Scientific BasisCambridge University PressNew YorkGoogle Scholar
  10. 10.
    Houghton, R. A., Boone, R. D., Fruci, J. R., Hobbie, J. E., Melillo, J. M., Palm, C. A., Peterson, B. J., Shaver, G. R., Woodwell, G. M. 1987The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux.Tellus39B122139Google Scholar
  11. 11.
    Houghton, R. A.and Hackler, J. L. 2001. Carbon flux to the atmosphere from land-use changes: 1850–1990. ORNL/CDIAC-131, NDP-050/R1. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. 86pp. [Available at http://cdiac.esd.ornl.gov/epubs/ndp/ndp050/ndp050.html]Google Scholar
  12. 12.
    Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., Woodwell, G. M. 1983Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere.Ecological Monographs53235262Google Scholar
  13. 13.
    Houghton, R. A. 1999The annual net flux of carbon to the atmosphere from changes in land use 1850–1990.Tellus51B298313Google Scholar
  14. 14.
    Mann, L. K. 1986Changes in soil carbon storage after cultivation.Soil Science142279288Google Scholar
  15. 15.
    Marland, G., West, T. O., Schlamadinger, B., Canella, L. 2003Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions.Tellus55B613622Google Scholar
  16. 16.
    Mooney, S., Antle, J., Capalbo, S. and Paustian, K. (2002) Contracting for soil carbon credits: design and costs of measurement and monitoring. Staff Paper 2002-01, Department of Agricultural Economics and Economics, Montana State University, Boseman, Montana. [Available at http://www.climate.montana.edu/pdf/mooney.pdf].Google Scholar
  17. 17.
    Mosier, A. R., Duxbury, J. M., Freney, J. R., Heinemeyer, O., Minami, K. 1996Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation.Plant and Soil18195108Google Scholar
  18. 18.
    Mosier, A. R., Duxbury, J. M., Freney, J. R., Heinemeyer, O., Minami, K. 1998Assessing and mitigating N2O emissions from agricultural soils.Climatic Change40738CrossRefGoogle Scholar
  19. 19.
    Mummey, D. L., Smith, J. L., Bluhm, G. 1998Assessment of alternative soil management practices on N2O emissions from US agriculture.Agriculture, Ecosystems and Environment707987Google Scholar
  20. 20.
    Murty, D., Kirschbaum, M. U. F., McMurtie, R. E., McGilvray, H. 2002Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature.Global Change Biology8105123CrossRefGoogle Scholar
  21. 21.
    Paul, K. I., Polglase, P. O., Nyakuengama, J. G., Khanna, P. K. 2002Change in soil carbon following afforestation.Forest Ecology and Management168241257CrossRefGoogle Scholar
  22. 22.
    Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van Noordwijk, M., Woomer, P. C. 1997Agricultural soils as a sink to mitigate CO2 emissions.Soil Use and Management13230244Google Scholar
  23. 23.
    Penman, J., Kruger D., Galbally, I., Hiraishi, G., Nyenzi, B., Emmanuel, S., Buendia, L., Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K., Tanabe, K. (eds.) (2000) Good practice guidance and uncertainty management in national greenhouse gas inventories. Institute for Global Environmental Strategies, Kanagawa, Japan.Google Scholar
  24. 24.
    Polglase, P. J., Paul, K. I., Khanna, P. K., Nyakuengama, J. G., O’Connell, A. M., Grove, T. S., Battaglia, M. 2000Change in soil carbon following afforestation or reforestation. Technical report no. 20Australian Greenhouse OfficeCanberra, AustraliaGoogle Scholar
  25. 25.
    Post, W. M. 2003

    Impact of soil restoration, management, and land-use history on forest-soil carbon

    Kimble,  J. M.Heath, L. S.Birdsey, R. A.Lal, R. eds. The potential for U.S. forest soils to sequester carbon and mitigate the greenhouse effect.CRC PressNew York191199
    Google Scholar
  26. 26.
    Post, W. M., Kwon, K. C. 2000Soil carbon sequestration and land-use change: processes and potential.Global Change Biology6317327CrossRefGoogle Scholar
  27. 27.
    Post, W. M., Mann, L. K. 1990

    Changes in soil organic carbon and nitrogen as a result of cultivation.

    Bouwman, A. F. eds. Soils and the Greenhouse Effect.John Wiley & SonsNew York401406
    Google Scholar
  28. 28.
    Schlamadinger, B., and Marland, G. (2000) Land use and global climate change—forests, land management, and the Kyoto Protocol. Pew Center on Global Climate Change, Arlington, Virginia.Google Scholar
  29. 29.
    Schlesinger, W. H. 1986

    Changes in soil carbon storage and associated properties with disturbance and recovery.

    Trabalka, J. R.Reichle, D. E. eds. The changing carbon cycle-a global analysis.Springer-VerlagNew York194220
    Google Scholar
  30. 30.
    Silver, W. L., Ostertag, R., Lugo, A. E. 2000The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands.Restoration Ecology8394407CrossRefGoogle Scholar
  31. 31.
    Smith, P., Goulding, K. W., Smith, K. A., Powlson, D. S., Smith, J. U., Falloon, P., Coleman, K. 2001Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential.Nutrient Cycling in Agroecosystems60237252CrossRefGoogle Scholar
  32. 32.
    Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., Dokken, D. J. 2000Land use, land-use change, and forestry. Intergovernmental Panel on Climate Change special reportCambridge UniversityNew YorkGoogle Scholar
  33. 33.
    West, T.O. 2002. Soil carbon accounting: options to measure, monitor, and address project-level issues. Forestry and Agriculture Greenhouse Gas Modeling Forum. Shepherdstown, West Virginia: 8–11 October, 2002. [Available at http://foragforum.rti.org/documents/West.ppt]Google Scholar
  34. 34.
    West, T. O., Marland, G. 2002A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment91217232Google Scholar
  35. 35.
    West, T. O., Post, W. M. 2002Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis.Soil Science Society of America Journal6619301946Google Scholar
  36. 36.
    Whiting, G. J., Chanton, J. P. 2001Greenhouse carbon balance of wetlands: methane emissions versus carbon sequestration.Tellus53B521528Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Tristram O. West
    • 1
  • Gregg Marland
    • 1
  • Anthony W. King
    • 1
  • Wilfred M. Post
    • 1
  • Atul K. Jain
    • 2
  • Kenneth Andrasko
    • 3
  1. 1.Environmental Sciences DivisionOak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6335USA
  2. 2.Department of Atmospheric SciencesUniversity of Illinois, Urbana-Champaign, 105 S. Gregory Street, Urbana, Illinois 61801USA
  3. 3.U.S. Environmental Protection Agency1200 Pennsylvania Ave. NW, Washington, DC 20460USA

Personalised recommendations