Skip to main content

Advertisement

Log in

Brown Adipose Tissue Promotes Autologous Fat Grafts Retention Possibly Through Inhibiting Wnt/β-Catenin Pathway

  • Original Articles
  • Fat Injection
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

In plastic surgery, autologous fat grafts (AFG) play an important role because of their abundant supply, biocompatibility, and low rejection rate. However, the lower retention rate of fat grafts limits their widespread use. Brown adipose tissue (BAT) can promote angiogenesis and regulate the level of associated inflammation. This study explored whether BAT has a facilitative effect on fat graft retention.

Methods

We obtained white adipose tissue (WAT) from c57 mice and combined it with either BAT from c57 mice or phosphate-buffered saline (PBS) as a control. These mixtures were injected subcutaneously into the back of thymus-free nude mice. After 12 weeks, fat grafts were harvested, weighed, and analyzed.

Results

We found that the BAT-grafted group had higher mass retention, more mature adipocytes, and higher vascularity than the other group. Further analysis revealed that BAT inhibited M1 macrophages; down-regulated IL-6, IL-1β, and TNF-β; upregulated M2 macrophages and Vascular endothelial growth factor-A (VEGFA); and promoted adipocyte regeneration by inhibiting the Wnt/β-catenin pathway, which together promoted adipose graft retention.

Conclusion

The study demonstrated that BAT improved adipose graft retention by promoting angiogenesis, inhibiting tissue inflammation levels and the Wnt/β-catenin pathway.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun JM, Ho CK, Gao Y, Chong CH, Zheng DN, Zhang YF, Yu L (2021) Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem Cell Res Ther 12:1–16

    Article  Google Scholar 

  2. Bayram Y, Sezgic M, Karakol P, Bozkurt M, Filinte GT (2019) The use of autologous fat grafts in breast surgery: a literature review. Arch Plast Surg 46(06):498–510

    Article  PubMed  PubMed Central  Google Scholar 

  3. Coleman SR (2020) Long-term survival of fat transplants: controlled demonstrations. Aesthetic Plast Surg 44(4):1268–1272

    Article  PubMed  Google Scholar 

  4. Yuan X, Hu T, Zhao H, Huang Y, Ye R, Lin J, Chen ZJ (2016) Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proceed Nat Acad Sci 113(10):2708–2713

    Article  CAS  Google Scholar 

  5. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  PubMed  Google Scholar 

  6. Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, Tsubota A, Saito M, Kimura K, Sakaue H (2020) UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism 113:154396

    Article  CAS  PubMed  Google Scholar 

  7. Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, Cao Y (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metabol 9(1):99–109

    Article  CAS  Google Scholar 

  8. Neels JG, Thinnes T, Loskutoff DJ (2004) Angiogenesis in an in vivo model of adipose tissue development. FASEB J 18(9):983–985

    Article  CAS  PubMed  Google Scholar 

  9. Yi CG, Xia W, Zhang LX, Zhen Y, Shu MG, Han Y, Guo SZ (2007) VEGF gene therapy for the survival of transplanted fat tissue in nude mice. J Plast Reconstr Aesthet Surg 60(3):272–278

    Article  CAS  PubMed  Google Scholar 

  10. Elias I, Franckhauser S, Ferré T, Vilà L, Tafuro S, Muñoz S, Bosch F (2012) Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes 61(7):1801–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai J, Feng J, Liu K, Zhou S, Lu F (2018) Early macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plast Reconstr Surg 141(2):376–386

    Article  CAS  PubMed  Google Scholar 

  12. Yu Q, Cai Y, Huang H et al (2018) Co-transplantation of nanofat enhances neovascularization and fat graft survival in nude mice. Aesthetic Surg J 38(6):667–675

    Article  Google Scholar 

  13. Song Y et al (2018) Usnic acid inhibits hypertrophic scarring in a rabbit ear model by suppressing scar tissue angiogenesis. Biomed Pharmacother 108:524–530

    Article  CAS  PubMed  Google Scholar 

  14. Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M (2014) FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63(3):900–911

    Article  CAS  PubMed  Google Scholar 

  15. Reggio A, Rosina M, Palma A, Cerquone Perpetuini A, Petrilli LL, Gargioli C, Cesareni G (2020) Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ 27(10):2921–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zuo Q, He J, Zhang S, Wang H, Jin G, Jin H, Qin W (2021) PPARγ Coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARγ–dependent WNT/β-catenin/pyruvate dehydrogenase kinase isozyme 1 axis. Hepatology 73(2):644–660

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura T, Hashimoto H, Nakanishi I, Furukawa M (2000) Microvascular angiogenesis and apoptosis in the survival of free fat grafts. Laryngoscope 110(8):1333–1338

    Article  CAS  PubMed  Google Scholar 

  18. Villarroya J, Cereijo R, Gavaldà-Navarro A, Peyrou M, Giralt M, Villarroya F (2019) New insights into the secretory functions of brown adipose tissue. J Endocrinol 243(2):R19–R27

    Article  CAS  PubMed  Google Scholar 

  19. Villarroya F, Cereijo R, Villarroya J, Giralt M (2017) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13(1):26–35

    Article  CAS  PubMed  Google Scholar 

  20. Wang GX, Zhao XY, Lin JD (2015) The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol Metab 26(5):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tran TT, Kahn CR (2010) Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 6(4):195–213

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu X, Wang S, You Y, Meng M, Zheng Z, Dong M, Jin W (2015) Brown adipose tissue transplantation reverses obesity in Ob/Ob mice. Endocrinology 156(7):2461–2469

    Article  CAS  PubMed  Google Scholar 

  23. Payab M, Abedi M, Foroughi Heravani N, Hadavandkhani M, Arabi M, Tayanloo-Beik A, Arjmand B (2021) Brown adipose tissue transplantation as a novel alternative to obesity treatment: a systematic review. Int J Obes 45(1):109–121

    Article  Google Scholar 

  24. Wang W, Seale P (2016) Control of brown and beige fat development. Nat Rev Mol Cell Biol 17(11):691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5(5):495–502

    Article  CAS  PubMed  Google Scholar 

  26. Khouri Jr RK, Khouri RE, Lujan-Hernandez JR, Khouri KR, Lancerotto L, Orgill DP (2014) Diffusion and perfusion: the keys to fat grafting. Plast Reconstr Surg Glob Open 2(9)

  27. Wu M, Li Y, Wang Z, Feng J, Wang J, Xiao X, Dong Z (2020) Botulinum toxin a improves supramuscular fat graft retention by enhancing angiogenesis and adipogenesis. Dermatol Surg 46(5):646–652

    Article  CAS  PubMed  Google Scholar 

  28. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Goodman SB (2019) Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196:80–89

    Article  CAS  PubMed  Google Scholar 

  29. Lee P, Swarbrick MM, Ho KK (2013) Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev 34(3):413–438

    Article  CAS  PubMed  Google Scholar 

  30. Ferrante AW Jr (2013) The immune cells in adipose tissue. Diabetes Obes Metab 15(s3):34–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kepple JD, Barra JM, Young ME, Hunter CS, Tse HM (2022) Islet transplantation into brown adipose tissue can delay immune rejection. JCI Insight 7(4)

  32. Espinoza-Jiménez A, Peon AN, Terrazas LI (2012) Alternatively activated macrophages in types 1 and 2 diabetes. Med Inflamm 2012:815953

  33. Zhang S, Liu Y, Zhang X, Zhu D, Qi X, Cao X, Li Z (2018) Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics 8(19):5348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, Zhao S (2019) Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Disease 10(12):918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev 16(1):22–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  37. Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibañez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 50(2):477–489

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is suppoted by Natural Science Foundation of Anhui Province (2008085QC112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Jia or Dongsheng Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Informed Consent

For this type of study, informed consent was not required.

Human and Animal Rights

We followed all guidelines for the care and use of animals. There was no research on human participants in this investigation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Li, H., Bao, Q. et al. Brown Adipose Tissue Promotes Autologous Fat Grafts Retention Possibly Through Inhibiting Wnt/β-Catenin Pathway. Aesth Plast Surg 48, 1817–1824 (2024). https://doi.org/10.1007/s00266-024-03888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-024-03888-4

Keywords

Navigation