Skip to main content

Advertisement

Log in

Salvianolic Acid B Attenuates Hypertrophic Scar Formation In Vivo and In Vitro

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Hypertrophic scars (HTSs) are a fibroproliferative disorder that occur following skin injuries. Salvianolic acid B (Sal-B) is an extractant from Salvia miltiorrhiza that has been reported to ameliorate fibrosis in multiple organs. However, the antifibrotic effect on HTSs remains unclear. This study aimed to determine the antifibrotic effect of Sal-B in vitro and in vivo.

Methods

In vitro, hypertrophic scar-derived fibroblasts (HSFs) were isolated from human HTSs and cultured. HSFs were treated with (0, 10, 50, 100 μmol/L) Sal-B. Cell proliferation and migration were evaluated by EdU, wound healing, and transwell assays. The protein and mRNA levels of TGFβI, Smad2, Smad3, α-SMA, COL1, and COL3 were detected by Western blots and real-time PCR. In vivo, tension stretching devices were fixed on incisions for HTS formation. The induced scars were treated with 100 μL of Sal-B/PBS per day according to the concentration of the group and followed up for 7 or 14 days. The scar condition, collagen deposition, and α-SMA expression were analyzed by gross visual examination, H&E, Masson, picrosirius red staining, and immunofluorescence.

Results

In vitro, Sal-B inhibited HSF proliferation, migration, and downregulated the expression of TGFβI, Smad2, Smad3, α-SMA, COL1, and COL3 in HSFs. In vivo, 50 and 100 μmol/L Sal-B significantly reduced scar size in gross and cross-sectional observations, with decreased α-SMA expression and collagen deposition in the tension-induced HTS model.

Conclusions

Our study demonstrated that Sal-B inhibits HSFs proliferation, migration, fibrotic marker expression and attenuates HTS formation in a tension-induced HTS model in vivo.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Agarwal S, Sorkin M, Levi B (2017) Heterotopic ossification and hypertrophic scars. Clin Plast Surg 44:749–755

    Article  PubMed  PubMed Central  Google Scholar 

  2. Griffin MF, Borrelli MR, Garcia JT, Januszyk M, King M, Lerbs T, Cui L, Moore AL, Shen AH, Mascharak S, Deleon NMD, Adem S, Taylor WL, DesJardins-Park HE, Gastou M, Patel RA, Duoto BA, Sokol J, Wei Y, Foster D, Chen K, Wan DC, Gurtner GC, Lorenz HP, Chang HY, Wernig G, Longaker MT (2021) JUN promotes hypertrophic skin scarring via CD36 in preclinical in vitro and in vivo models. Sci Transl Med 13:eabb3312

    Article  PubMed  PubMed Central  Google Scholar 

  3. Finnerty CC, Jeschke MG, Branski LK, Barret JP, Dziewulski P, Herndon DN (2016) Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet 388:1427–1436

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee HJ, Jang YJ (2018) Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids. Int J Mol Sci 19:711

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fredman R, Tenenhaus M (2013) Cushing’s syndrome after intralesional triamcinolone acetonide: a systematic review of the literature and multinational survey. Burns 39:549–557

    Article  PubMed  Google Scholar 

  6. Tan J, Zhou J, Huang L, Fu Q, Ao M, Yuan L, Luo G (2021) Hypertrophic scar improvement by early intervention with ablative fractional carbon dioxide laser treatment. Lasers Surg Med 53:450–457

    Article  PubMed  Google Scholar 

  7. Van Drooge AM, Vrijman C, Van Der Veen W, Wolkerstorfer A (2015) A randomized controlled pilot study on ablative fractional CO2 laser for consecutive patients presenting with various scar types. Dermatol Surg 41:371–377

    Article  PubMed  Google Scholar 

  8. Ogawa R, Akita S, Akaishi S, Aramaki-Hattori N, Dohi T, Hayashi T, Kishi K, Kono T, Matsumura H, Muneuchi G, Murao N, Nagao M, Okabe K, Shimizu F, Tosa M, Tosa Y, Yamawaki S, Ansai S, Inazu N, Kamo T, Kazki R, Kuribayashi S (2019) Diagnosis and treatment of keloids and hypertrophic scars-Japan scar workshop consensus document 2018. Burns Trauma 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ogawa R (2022) The most current algorithms for the treatment and prevention of hypertrophic scars and keloids: a 2020 update of the algorithms published 10 years ago. Plast Reconstr Surg 149:79e–94e

    Article  CAS  PubMed  Google Scholar 

  10. Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG (2011) Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med 17:113–125

    Article  CAS  PubMed  Google Scholar 

  11. Darby IA, Zakuan N, Billet F, Desmouliere A (2016) The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 73:1145–1157

    Article  CAS  PubMed  Google Scholar 

  12. Zhang YF, Zhou SZ, Cheng XY, Yi B, Shan SZ, Wang J, Li QF (2016) Baicalein attenuates hypertrophic scar formation via inhibition of the transforming growth factor-beta/Smad2/3 signalling pathway. Br J Dermatol 174:120–130

    Article  CAS  PubMed  Google Scholar 

  13. Berman B, Maderal A, Raphael B (2017) Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatol Surg 43(Suppl 1):3–18

    Article  Google Scholar 

  14. Ji QQ, Li YJ, Wang YH, Wang Z, Fang L, Shen L, Lu YQ, Shen LH, He B (2020) Salvianolic acid B improves postresuscitation myocardial and cerebral outcomes in a murine model of cardiac arrest: involvement of Nrf2 signaling pathway. Oxid Med Cell Longev 2020:1605456

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li D, Wang J, Hou J, Fu J, Liu J, Lin R (2016) Salvianolic acid B induced upregulation of miR-30a protects cardiac myocytes from ischemia/reperfusion injury. BMC Complement Altern Med 16:336

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin Z, Bao Y, Hong B, Wang Y, Zhang X, Wu Y (2021) Salvianolic acid B attenuated cisplatin-induced cardiac injury and oxidative stress via modulating Nrf2 signal pathway. J Toxicol Sci 46:199–207

    Article  CAS  PubMed  Google Scholar 

  17. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G (2021) Alleviatory effects of danshen, salvianolic acid A and salvianolic acid B on PC12 neuronal cells and drosophila melanogaster model of Alzheimer’s disease. J Ethnopharmacol 279:114389

    Article  CAS  PubMed  Google Scholar 

  18. Xiao Z, Liu W, Mu YP, Zhang H, Wang XN, Zhao CQ, Chen JM, Liu P (2020) Pharmacological effects of salvianolic acid b against oxidative damage. Front Pharmacol 11:572373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang D, Lu X, Wang E, Shi L, Ma C, Tan X (2021) Salvianolic acid B attenuates oxidative stress-induced injuries in enterocytes by activating Akt/GSK3beta signaling and preserving mitochondrial function. Eur J Pharmacol 909:174408

    Article  CAS  PubMed  Google Scholar 

  20. Sun JM, Ho CK, Gao Y, Chong CH, Zheng DN, Zhang YF, Yu L (2021) Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem Cell Res Ther 12:507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Q, Lu J, Lin J, Tang Y, Pu W, Shi X, Jiang S, Liu J, Ma Y, Li Y, Xu J, Jin L, Wang J, Wu W (2019) Salvianolic acid B attenuates experimental skin fibrosis of systemic sclerosis. Biomed Pharmacother 110:546–553

    Article  CAS  PubMed  Google Scholar 

  22. Wu C, Chen W, Ding H, Li D, Wen G, Zhang C, Lu W, Chen M, Yang Y (2019) Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3at linker regions in vivo and in vitro. Life Sci 239:116881

    Article  CAS  PubMed  Google Scholar 

  23. He Y, Lu R, Wu J, Pang Y, Li J, Chen J, Liu B, Zhou Y, Zhou J (2020) Salvianolic acid B attenuates epithelial-mesenchymal transition in renal fibrosis rats through activating Sirt1-mediated autophagy. Biomed Pharmacother 128:110241

    Article  CAS  PubMed  Google Scholar 

  24. Zhang T, Liu M, Gao Y, Li H, Song L, Hou H, Chen T, Ma L, Zhang G, Ye Z (2021) Salvianolic acid B inhalation solution enhances antifibrotic and anticoagulant effects in a rat model of pulmonary fibrosis. Biomed Pharmacother 138:111475

    Article  CAS  PubMed  Google Scholar 

  25. Tu L, Huang Q, Fu S, Liu D (2018) Aberrantly expressed long noncoding RNAs in hypertrophic scar fibroblasts in vitro: a microarray study. Int J Mol Med 41:1917–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pakshir P, Hinz B (2018) The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 68–69:81–93

    Article  PubMed  Google Scholar 

  27. Zhang Y, Wang J, Zhou S, Xie Z, Wang C, Gao Y, Zhou J, Zhang X, Li Q (2019) Flavones hydroxylated at 5, 7, 3’ and 4’ ameliorate skin fibrosis via inhibiting activin receptor-like kinase 5 kinase activity. Cell Death Dis 10:124

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kudo H, Jinnin M, Asano Y, Trojanowska M, Nakayama W, Inoue K, Honda N, Kajihara I, Makino K, Fukushima S, Ihn H (2014) Decreased interleukin-20 expression in scleroderma skin contributes to cutaneous fibrosis. Arthritis Rheumatol 66:1636–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi J, Guo S, Wu Y, Chen G, Lai J, Xu X (2020) Behaviour of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B on the migration, proliferation, and survival of human skin fibroblasts. J Liposome Res 30:93–106

    Article  CAS  PubMed  Google Scholar 

  30. Rippa AL, Kalabusheva EP, Vorotelyak EA (2019) Regeneration of dermis: scarring and cells involved. Cells 8:607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chin GS, Liu W, Peled Z, Lee TY, Steinbrech DS, Hsu M, Longaker MT (2001) Differential expression of transforming growth factor-beta receptors I and II and activation of Smad 3 in keloid fibroblasts. Plast Reconstr Surg 108:423–429

    Article  CAS  PubMed  Google Scholar 

  32. Zhang T, Wang XF, Wang ZC, Lou D, Fang QQ, Hu YY, Zhao WY, Zhang LY, Wu LH, Tan WQ (2020) Current potential therapeutic strategies targeting the TGF-beta/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 129:110287

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Gong Y, Xu W, Li L, Shi Z, Wang Q, He Y, Zhang C, Luo C, Fang Z, Yang Y (2021) Smad3 gene C-terminal phosphorylation site mutation exacerbates CCl4-induced hepatic fibrogenesis by promoting pSmad2L/C-mediated signaling transduction. Naunyn Schmiedebergs Arch Pharmacol 394:1779–1786

    Article  CAS  PubMed  Google Scholar 

  34. Liu Q, Chu H, Ma Y, Wu T, Qian F, Ren X, Tu W, Zhou X, Jin L, Wu W, Wang J (2016) Salvianolic acid B attenuates experimental pulmonary fibrosis through inhibition of the TGF-beta signaling pathway. Sci Rep 6:27610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang QL, Tao YY, Yuan JL, Shen L, Liu CH (2010) Salvianolic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro. BMC Cell Biol 11:31

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21:3250–3261

    Article  CAS  PubMed  Google Scholar 

  37. Shao T, Tang W, Li Y, Gao D, Lv K, He P, Song Y, Gao S, Liu M, Chen Y, Yi Z (2020) Research on function and mechanisms of a novel small molecule WG449E for hypertrophic scar. J Eur Acad Dermatol Venereol 34:608–618

    Article  CAS  PubMed  Google Scholar 

  38. Ye X, Pang Z, Zhu N (2019) Dihydromyricetin attenuates hypertrophic scar formation by targeting activin receptor-like kinase 5. Eur J Pharmacol 852:58–67

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Shan S, Wang J, Cheng X, Yi B, Zhou J, Li Q (2016) Galangin inhibits hypertrophic scar formation via ALK5/Smad2/3 signaling pathway. Mol Cell Biochem 413:109–118

    Article  CAS  PubMed  Google Scholar 

  40. Jia Q, Zhu R, Tian Y, Chen B, Li R, Li L, Wang L, Che Y, Zhao D, Mo F, Gao S, Zhang D (2019) Salvia miltiorrhiza in diabetes: a review of its pharmacology, phytochemistry, and safety. Phytomedicine 58:152871

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China [grant numbers 81772103 and 82172234].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan-Ning Zheng, Yi-Fan Zhang or Li Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This study was approved by the Ethics Committee of Shanghai Ninth People's Hospital and complied with the principles of the Declaration of Helsinki.

Informed Consent

All patients provided informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIFF 15994 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, CH., Sun, JM., Liu, YX. et al. Salvianolic Acid B Attenuates Hypertrophic Scar Formation In Vivo and In Vitro. Aesth Plast Surg 47, 1587–1597 (2023). https://doi.org/10.1007/s00266-023-03279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03279-1

Keywords

Navigation