Skip to main content

Advertisement

Log in

Three-dimensional Quantitative Standards for Assessing Outcomes of Facial Lipotransfer: A Review

  • Review
  • Fat Injection
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Reliable quantitative data are required to address the unpredictability of facial autologous fat grafting (AFG). Facial evaluation by 3D scanning technology is getting popular. However, this process lacks unified standards and the reliability assessments. This study aimed to summarize a set of standards to improve the 3D quantified reliability of AFG outcomes.

Methods

A systematic review was used to collect the differences in and limitations of 3D assessments and analyze the effect of the quantification process on the AFG outcomes. Healthy subjects undergoing only one facial structural AFG and 3D assessments were included. The revealed specific issues guided the subsequent narrative review that involves 3D measurement and fat volume retention rate (FVRR) analysis. Criteria were formulated based on the narrative review.

Results

The systematic review revealed the quantitative process to be operator-dependent. The intra-group FVRR in the postoperative 11+ month group varied significantly (P=.03). The review identified a set of 3D measurement standards, including two optimal software products, two necessary steps for preprocessing, and four testing criteria. We proposed a new calculation formula and parameter and recommended a segmental area analysis for assessing the outcomes of full-face fat grafting.

Conclusions

As far as the 3D evaluation of AFG outcomes is concerned, this is the first study to comprehensively analyze the process and set quantitative criteria. These standards would not only guide future research more reliably, but also provide fresh insight into the review of the past research. 3D measurement standards also apply to all face-related studies requiring 3D registration.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B (2015) The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg 136:897–912. https://doi.org/10.1097/prs.0000000000001590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mestak O, Sukop A, Hsueh YS et al (2014) Centrifugation versus PureGraft for fatgrafting to the breast after breast-conserving therapy. World J Surg Oncol 12:178. https://doi.org/10.1186/1477-7819-12-178

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lv Q, Li X, Qi Y, Gu Y, Liu Z, Ma GE (2021) Volume retention after facial fat grafting and relevant factors: a systematic review and meta-analysis. Aesthetic Plast Surg 45:506–520. https://doi.org/10.1007/s00266-020-01612-6

    Article  PubMed  Google Scholar 

  4. Meier JD, Glasgold RA, Glasgold MJ (2009) Autologous fat grafting: long-term evidence of its efficacy in midfacial rejuvenation. Arch Facial Plast Surg 11:24–28. https://doi.org/10.1016/s1535-1513(09)79375-0

    Article  PubMed  Google Scholar 

  5. Denadai R, Raposo-Amaral CA, da Silva SA, Buzzo CL, Raposo-Amaral CE (2019) Complementary fat graft retention rates are superior to initial rates in craniofacial contour reconstruction. Plast Reconstr Surg 143:823–835. https://doi.org/10.1097/prs.0000000000005389

    Article  CAS  PubMed  Google Scholar 

  6. Gontijo-de-Amorim NF, Charles-de-Sá L, Rigotti G (2017) Mechanical supplementation with the stromal vascular fraction yields improved volume retention in facial lipotransfer: A 1-Year Comparative Study. Aesthet Surg J 37:975–985. https://doi.org/10.1093/asj/sjx115

    Article  PubMed  Google Scholar 

  7. Swanson E (2011) Malar augmentation assessed by magnetic resonance imaging in patients after face lift and fat injection. Plast Reconstr Surg 127:2057–2065. https://doi.org/10.1097/PRS.0b013e31820e9286

    Article  CAS  PubMed  Google Scholar 

  8. Kaufman MR, Miller TA, Huang C et al (2007) Autologous fat transfer for facial recontouring: is there science behind the art? Plast Reconstr Surg 119:2287–2296. https://doi.org/10.1097/01.prs.0000260712.44089.e7

    Article  CAS  PubMed  Google Scholar 

  9. Lübbers HT, Medinger L, Kruse A, Grätz KW, Matthews F (2010) Precision and accuracy of the 3dMD photogrammetric system in craniomaxillofacial application. J Craniofac Surg 21:763–767. https://doi.org/10.1097/SCS.0b013e3181d841f7

    Article  PubMed  Google Scholar 

  10. Mailey B, Baker JL, Hosseini A et al (2016) Evaluation of facial volume changes after rejuvenation surgery using a 3-dimensional camera. Aesthet Surg J 36:379–387. https://doi.org/10.1093/asj/sjv226

    Article  PubMed  Google Scholar 

  11. Gordon CC, Bradtmiller B (1992) Interobserver error in a large scale anthropometric survey. Am J Hum Biol 4:253–263

    Article  PubMed  Google Scholar 

  12. Condé-Green A, Kotamarti V, Nini KT et al (2016) Fat grafting for gluteal augmentation: a systematic review of the literature and meta-analysis. Plast Reconstr Surg 138:437e–446e. https://doi.org/10.1097/prs.0000000000002435

    Article  PubMed  Google Scholar 

  13. Ward RE, Jamison PL (1991) Measurement precision and reliability in craniofacial anthropometry: implications and suggestions for clinical applications. J Craniofac Genet Dev Biol 11:156–216

    CAS  PubMed  Google Scholar 

  14. Gerth DJ, King B, Rabach L, Glasgold RA, Glasgold MJ (2014) Long-term volumetric retention of autologous fat grafting processed with closed-membrane filtration. Aesthet Surg J 34:985–994. https://doi.org/10.1177/1090820x14542649

    Article  PubMed  Google Scholar 

  15. Zhu M, Xie Y, Zhu Y, Chai G, Li Q (2016) A novel noninvasive three-dimensional volumetric analysis for fat-graft survival in facial recontouring using the 3L and 3M technique. J Plast Reconstr Aesthet Surg 69:248–254. https://doi.org/10.1016/j.bjps.2015.09.016

    Article  PubMed  Google Scholar 

  16. Kang GCW, Hsiao YC, Huang JJ et al (2019) Aesthetic durable forehead contouring in Asians with fat grafting and botulinum toxin. Ann Plast Surg 82:S59–S65. https://doi.org/10.1097/sap.0000000000001704

    Article  CAS  PubMed  Google Scholar 

  17. Cohen SR, Wesson J, Willens S et al (2022) Standardized anatomic and regenerative facial fat grafting: objective photometric evaluation 1 to 19 months after injectable tissue replacement and regeneration. Aesthet Surg J 42:327–339. https://doi.org/10.1093/asj/sjab379

    Article  PubMed  Google Scholar 

  18. Chang KH, Chen C (2011) 3D Shape engineering and design parameterization. Comput-Aided Des Appl 8:681–692

    Article  Google Scholar 

  19. Geospatial modeling & visualization. (2022) RapidForm. https://gmv.cast.uark.edu/scanning-2/software/rapidform/. Accessed 3 Mar 2022.

  20. Maal TJJ, Bv L, Plooij JM et al (2010) Registration of 3-dimensional facial photographs for clinical use. J Oral Maxillofac Surg 68:2391–2401. https://doi.org/10.1016/j.joms.2009.10.017

    Article  PubMed  Google Scholar 

  21. Maal TJ, Plooij JM, Rangel FA, Mollemans W, Schutyser FA, Bergé SJ (2008) The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 37:641–646. https://doi.org/10.1016/j.ijom.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  22. Guo J, Mei X, Tang K (2013) Automatic landmark annotation and dense correspondence registration for 3D human facial images. BMC Bioinform 14:232. https://doi.org/10.1186/1471-2105-14-232

    Article  Google Scholar 

  23. 3D Systems (2022) Wrap knowledge base. https://support.3dsystems.com/s/article/Wrap-Knowledge-Base?language=en_US. Accessed 3 Mar. 2022.

  24. Yaniv Z, Cleary K (2006) Image-guided procedures: a review. Comput Aided Int Med Rob. 3(1–63):7

    Google Scholar 

  25. Dindaroğlu F, Kutlu P, Duran GS, Grgülü S, Aslan E (2016) Accuracy and reliability of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D photogrammetry. Angle Orthod 86:487–494. https://doi.org/10.2319/041415-244.1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Harris EF, Smith RN (2009) Accounting for measurement error: a critical but often overlooked process. Arch Oral Biol 54(Suppl 1):S107-117. https://doi.org/10.1016/j.archoralbio.2008.04.010

    Article  PubMed  Google Scholar 

  27. Aldridge K, Boyadjiev SA, Capone GT, DeLeon VB, Richtsmeier JT (2005) Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. Am J Med Genet A 138A:247–253. https://doi.org/10.1002/ajmg.a.30959

    Article  PubMed  Google Scholar 

  28. Plooij JM, Swennen GRJ, Rangel FA et al (2009) Evaluation of reproducibility and reliability of 3D soft tissue analysis using 3D stereophotogrammetry. Int J Oral Maxillofac Surg 38:267–273. https://doi.org/10.1016/j.ijom.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  29. Demant S, Hermann NV, Darvann TA, et al (2009) Detecting subtle facial dysmorphology in children with juvenile idiopathic arthritis: adding color texture to surface scans increases landmarking precision. In: Proceedings of the 66th Annual Meeting of the American Cleft Palate Craniofacial Association; April 24, 2009; Arizona, United States

  30. Kamoen A, Dermaut L, Verbeeck R (2001) The clinical significance of error measurement in the interpretation of treatment results. Eur J Orthod 23:569–578. https://doi.org/10.1093/ejo/23.5.569

    Article  CAS  PubMed  Google Scholar 

  31. Jiang L, Zhang S, Yang J, Zhuang X, Zhang L, Gu L (2015) A robust automated markerless registration framework for neurosurgery navigation. Int J Med Robot 11:436–447. https://doi.org/10.1002/rcs.1626

    Article  PubMed  Google Scholar 

  32. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans on Pattern Anal Mach Intell 14:239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  33. Metzger MC, Hohlweg-Majert B, Schön R et al (2007) Verification of clinical precision after computer-aided reconstruction in craniomaxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:e1-10. https://doi.org/10.1016/j.tripleo.2007.04.015

    Article  PubMed  Google Scholar 

  34. Ulijaszek SJ, Kerr DA (1999) Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82:165–177

    Article  CAS  PubMed  Google Scholar 

  35. Mueller W, Martorell R (1988) Reliability and accuracy of measurement. In: Timothy GL, Alex FR, Reynaldo M (eds) Anthropometric Standardization Reference Manual. Human Kinetics, Champaign

    Google Scholar 

  36. Utermohle CJ, Zegura SL (1982) Intra- and interobserver error in craniometry: a cautionary tale. Am J Phys Anthropol 57:303–310. https://doi.org/10.1002/ajpa.1330570307

    Article  CAS  PubMed  Google Scholar 

  37. Aung SC, Ngim RC, Lee ST (1995) Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements. Br J Plast Surg 48:551–558. https://doi.org/10.1016/0007-1226(95)90043-8

    Article  CAS  PubMed  Google Scholar 

  38. Weinberg SM, Scott NM, Neiswanger K et al (2004) Digital three-dimensional photogrammetry: evaluation of anthropometric precision and accuracy using a Genex 3D camera system. Cleft Palate Craniofac J 41:507–518. https://doi.org/10.1597/03-066.1

    Article  PubMed  Google Scholar 

  39. Knoops PGM, Beaumont CAA, Borghi A et al (2017) Comparison of three-dimensional scanner systems for craniomaxillofacial imaging. J Plast Reconstr Aesthet Surg 70:441–449. https://doi.org/10.1016/j.bjps.2016.12.015

    Article  PubMed  Google Scholar 

  40. Kouchi M (2014) Anthropometric methods for apparel design: body measurement devices and techniques. In: Gupta D, Zakaria N (eds) Anthropometry, Apparel Sizing and Design. Woodhead Publishing, UK. https://doi.org/10.1533/9780857096890.1.67

    Chapter  Google Scholar 

  41. Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22:85–93. https://doi.org/10.1002/uog.122

    Article  CAS  PubMed  Google Scholar 

  42. Cotofana S, Koban KC, Konstantin F et al (2019) The surface-volume coefficient of the superficial and deep facial fat compartments: a cadaveric three-dimensional volumetric analysis. Plast Reconstr Surg 143:1605–1613. https://doi.org/10.1097/prs.0000000000005524

    Article  CAS  PubMed  Google Scholar 

  43. Cotofana S, Koban K, Pavicic T et al (2019) Clinical validation of the surface volume coefficient for minimally invasive treatment of the temple. J Drugs Dermatol 18:533

    PubMed  Google Scholar 

  44. Peer LA (1950) Loss of weight and volume in human fat grafts with postulation of a “cell survival theory.” Plast Reconstr Surg Glob Open 5:217–230

    Article  Google Scholar 

  45. Cohen SR, Hewett S, Ross L et al (2020) Progressive improvement in midfacial volume 18 to 24 months after simultaneous fat grafting and facelift: an insight to fat graft remodeling. Aesthet Surg J 40:235–242. https://doi.org/10.1093/asj/sjy279

    Article  PubMed  Google Scholar 

  46. Basile FV, Basile AR (2017) Prospective controlled study of chin augmentation by means of fat grafting. Plast Reconstr Surg 140:1133–1141. https://doi.org/10.1097/prs.0000000000003895

    Article  CAS  PubMed  Google Scholar 

  47. Lin S, Hsiao YC, Huang JJ et al (2017) Minimal invasive rhinoplasty: fat injection for nasal dorsum contouring. Ann Plast Surg 78:117–123. https://doi.org/10.1097/SAP.0000000000001016

    Article  CAS  Google Scholar 

  48. Wu R, Jin X, Yang X, Yu P, Qi Z (2021) Comparative study of three-dimensional volume measurement for facial fat grafting. J Craniofac Surg 32:1341–1345. https://doi.org/10.1097/scs.0000000000007395

    Article  PubMed  Google Scholar 

  49. Vaz S, Falkmer T, Passmore AE et al (2013) The case for using the repeatability coefficient when calculating test-retest reliability. PLoS ONE 8:73990. https://doi.org/10.1371/journal.pone.0073990

    Article  CAS  Google Scholar 

  50. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lazzarotto A, Franz L, Stella E et al (2019) Volumetric analysis of fat injection by computerized tomography in orthognathic surgery: preliminary report on a novel volumetric analysis process for the quantification of aesthetic results. J Craniofac Surg 30:771–776

    Article  PubMed  Google Scholar 

  52. Haidar R et al (2021) Quantitative analysis of the lifting effect of facial soft-tissue filler injections. Plast Reconstr Surg 147:765e–776e. https://doi.org/10.1097/prs.0000000000007857

    Article  CAS  PubMed  Google Scholar 

  53. Huang Y, Li D, Qiao L et al (2021) A genome-wide association study of facial morphology identifies novel genetic loci in Han Chinese. J Genet Genomics 48:198–207. https://doi.org/10.1016/j.jgg.2020.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Contributions

WW contributed to study design and manuscript editing. CY contributed to database search and critical revision. HW contributed to data gathering. WG contributed to critical revision.

Corresponding author

Correspondence to Wanhou Guo.

Ethics declarations

Conflict of interest

The authors of this article have no conflicts of interest to disclose.

Consent for Publication

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 2805 KB)

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yao, C., Wang, H. et al. Three-dimensional Quantitative Standards for Assessing Outcomes of Facial Lipotransfer: A Review. Aesth Plast Surg 47, 1568–1577 (2023). https://doi.org/10.1007/s00266-023-03266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03266-6

Keywords

Navigation