Skip to main content

Advertisement

Log in

Effects of Melatonin on Fat Graft Retention Through Browning of Adipose Tissue and Alternative Macrophage Polarization

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Melatonin is a widely used drug that can affect adipocyte inflammation, resulting in adipose tissue browning. Inducing the browning of white fat and changing the inflammatory microenvironment of early transplanted fat have positive effects on the retention rate of fat grafts. This study aimed to evaluate the effects of melatonin on fat graft retention, determine whether it is related to adipose tissue browning and the inflammatory microenvironment, and explore the underlying mechanisms.

Methods

A C57BL/6 mice fat transplantation model was established. The mice were divided into a control group (ethanol), a high-dose group (40 mg/kg/day melatonin), a medium-dose group (20 mg/kg/day melatonin), and a low-dose group (10 mg/kg/day melatonin). They were also given oral gavage treatment for 2 weeks. The grafted fat was collected 2, 4, and 12 weeks after treatment.

Results

The medium-dose and high-dose melatonin groups had significantly higher fat graft retention rates than the control group at 12 weeks. The medium-dose melatonin group had smaller multilocular adipocytes, which enhanced the expression of uncoupling protein 1 and increased neovascularization in the grafted fat. The medium-dose group also had a higher distribution of M2 macrophages.

Conclusions

These findings suggest that melatonin administration can improve the retention of fat grafts through polarization of macrophages toward the anti-inflammatory type and induction of adipose tissue browning.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanson SE (2021) The future of fat grafting. Aesthet Surg J 41(Suppl 1):S69–S74

    Article  PubMed  Google Scholar 

  2. Zhu H, Quan Y, Wang J et al (2021) Improving low-density fat by condensing cellular and collagen content through a mechanical process: basic research and clinical applications. Plast Reconstr Surg 148(5):1029–1039

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Chen Y, Wang Z et al (2022) Adipose-derived stem cells regulate CD4+ T-cell-mediated macrophage polarization and fibrosis in fat grafting in a mouse model. Heliyon. 8(11):e11538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kato H, Mineda K (2014) Eto H Degeneration, regeneration, and cicatrization after fat grafting: dynamic total tissue remodeling during the first 3 months. Plast Reconstr Surg 133(3):303e–313e

    Article  CAS  PubMed  Google Scholar 

  5. Kato H, Araki J, Doi K et al (2014) Normobaric hyperoxygenation enhances initial survival, regeneration, and final retention in fat grafting. Plast Reconstr Surg 134(5): 951–959

  6. Kerfant N, Albacete G, Guernec A et al (2020) Fat grafting: early hypoxia, oxidative stress, and inflammation developing prior to injection. J Plast Reconstr Aesthet Surg 73:1775–1784

    Article  PubMed  Google Scholar 

  7. Zhang Y, Cai J, Zhou T et al (2018) Improved long-term volume retention of stromal vascular fraction gel grafting with enhanced angiogenesis and adipogenesis. Plast Reconstr Surg 141(5):676e–686e

    Article  CAS  PubMed  Google Scholar 

  8. Eto H, Kato H, Suga H et al (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129(5):1081–1092

    Article  CAS  PubMed  Google Scholar 

  9. Suga H, Eto H, Aoi N et al (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg 126(6):1911–1923

    Article  CAS  PubMed  Google Scholar 

  10. Chen K, Xiong J, Xu S et al (2022) Adipose-derived stem cells exosomes improve fat graft survival by promoting prolipogenetic abilities through Wnt/beta-Catenin pathway. Stem Cells Int. 2022:5014895

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ghiasloo M, De Wilde L, Singh K et al (2021) A systematic review on extracellular vesicles-enriched fat grafting: a shifting paradigm. Aesthet Surg J 41(11):NP1695–NP1705

  12. Jiang W, Cai J, Guan J et al (2021) Characterized the adipogenic capacity of adipose-derived stem cell, extracellular matrix, and microenvironment with fat components grafting. Front Cell Dev Biol. 9:723057

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen Q, Liu S, Cao L, Yu M, Wang H (2022) Effects of macrophage regulation on fat grafting survival: Improvement, mechanisms, and potential application-A review. J Cosmet Dermatol 21(1):54–61

    Article  PubMed  Google Scholar 

  14. Shukla L, Yuan Y, Shayan R, Greening DW, Karnezis T (2020) Fat therapeutics: the clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front Pharmacol 11:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xia J, Zhu H, Zhu S et al (2021) Induced Beige adipocytes improved fat graft retention by promoting adipogenesis and angiogenesis. Plast Reconstr Surg 148(3):549–558

    Article  CAS  PubMed  Google Scholar 

  16. Cai J, Li B, Wang J et al (2018) Tamoxifen-prefabricated Beige adipose tissue improves fat graft survival in mice. Plast Reconstr Surg 141(4):930–940

    Article  CAS  PubMed  Google Scholar 

  17. Wankhade UD, Shen M, Yadav H, Thakali KM (2016) Novel browning agents, mechanisms, and therapeutic potentials of brown adipose tissue. Biomed Res Int 2016:2365609

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dang J, Yang J, Yu Z et al (2022) Bone marrow mesenchymal stem cells enhance angiogenesis and promote fat retention in fat grafting via polarized macrophages. Stem Cell Res Ther 13(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu X, Qiao S, Wang W et al (2021) Melatonin prevents periimplantitis via suppression of TLR4/NF-kappaB. Acta Biomater 134:325–336

    Article  CAS  PubMed  Google Scholar 

  20. Chitimus DM, Popescu MR, Voiculescu SE et al (2020) Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules 10(9):1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manchester LC, Coto-Montes A, Boga JA et al (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  22. Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175(16):3190–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Gan L, Zhang T, Ren Q, Sun C (2018) Melatonin alleviates adipose inflammation through elevating alpha-ketoglutarate and diverting adipose-derived exosomes to macrophages in mice. J Pineal Res 64(1)

  24. Xu Z, You W, Liu J, Wang Y, Shan T (2020) Elucidating the regulatory role of melatonin in brown, white, and Beige adipocytes. Adv Nutr 11(2):447–460

    Article  PubMed  Google Scholar 

  25. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56(4):371–381

    Article  CAS  PubMed  Google Scholar 

  26. Kim M, Lee SM, Jung J et al (2020) Pinealectomy increases thermogenesis and decreases lipogenesis. Mol Med Rep 22(5):4289–4297

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Abdullahi A, Auger C, Stanojcic M et al (2019) Alternatively activated macrophages drive browning of white adipose tissue in burns. Ann Surg 269(3):554–563

    Article  PubMed  Google Scholar 

  28. Jimenez-Aranda A, Fernandez-Vazquez G, Campos D et al (2013) Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res 55(4):416–423

    Article  CAS  PubMed  Google Scholar 

  29. Xue Y, Petrovic N, Cao R et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9(1):99–109

    Article  CAS  PubMed  Google Scholar 

  30. Mineda K, Kuno S, Kato H et al (2014) Chronic inflammation and progressive calcification as a result of fat necrosis: the worst outcome in fat grafting. Plast Reconstr Surg 133(5):1064–1072

    Article  CAS  PubMed  Google Scholar 

  31. Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154(9):2992–3000

    Article  CAS  PubMed  Google Scholar 

  32. Qiu L, Zhang Z, Zheng H et al (2018) Browning of human subcutaneous adipose tissue after its transplantation in nude mice. Plast Reconstr Surg 142(2):392–400

    Article  CAS  PubMed  Google Scholar 

  33. de Souza CAP, Gallo CC, de Camargo LS et al (2019) Melatonin multiple effects on brown adipose tissue molecular machinery. J Pineal Res 66(2):e12549

    Article  PubMed  Google Scholar 

  34. Cypess AM (2022) Reassessing human adipose tissue. N Engl J Med 386(8):768–779

    Article  CAS  PubMed  Google Scholar 

  35. Cai J, Feng J, Liu K, Zhou S, Lu F (2018) Early Macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plast Reconstr Surg 141(2):376–386

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Chen Y, Zhu S et al (2020) The effects of macrophage-mediated inflammatory response to the donor site on long-term retention of a fat graft in the recipient site in a mice model. J Cell Physiol 235(12):10012–10023

    Article  CAS  PubMed  Google Scholar 

  37. Xia Y, Chen S, Zeng S et al (2019) Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res 66(2):e12547

    Article  PubMed  Google Scholar 

  38. Liu PS, Lin YW, Burton FH, Wei LN (2015) Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance. Adipocyte 4(2):123–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan SS, Zhan W, Poon CJ et al (2018) Melatonin promotes survival of nonvascularized fat grafts and enhances the viability and migration of human adipose-derived stem cells via down-regulation of acute inflammatory cytokines. J Tissue Eng Regen Med 12(2):382–392

    Article  CAS  PubMed  Google Scholar 

  40. Phipps KD, Gebremeskel S, Gillis J et al (2015) Alternatively activated M2 macrophages improve autologous Fat Graft survival in a mouse model through induction of angiogenesis. Plast Reconstr Surg 135(1):140–149

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Foundation of National Natural Science Foundation of China (82202478).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenggang Yi or Baoqiang Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to the publication of this manuscript.

Ethics Approval

All animal experiments were approved by the Institutional Animal Ethics Committee Laboratory, following the guidelines the Air Force Military Medical University (IACUC-20120561).

Informed Consent

As the subjects were animals, the principle of informed consent was not applicable to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, J., Yu, Z., Wang, T. et al. Effects of Melatonin on Fat Graft Retention Through Browning of Adipose Tissue and Alternative Macrophage Polarization. Aesth Plast Surg 47, 1578–1586 (2023). https://doi.org/10.1007/s00266-022-03242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-022-03242-6

Keywords

Navigation