The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review

Abstract

Background

Mesenchymal stem cell-based therapy is known to have the potential to induce angiogenesis. However, there are still some limitations regarding their clinical application. Photomodulation/photobiomodulation is non-invasive and non-toxic phototherapy able to stimulate cell viability, proliferation, differentiation, and migration, when the right irradiation parameters are applied. A review of the published articles on human conditioned-by-photobiomodulation mesenchymal cells in an in vitro set up was carried out. Our aim was to describe the studies' results and identify any possible tendency that might highlight the most suitable procedures.

Methods

A search in English of the PubMed database was carried out with the search criteria: photobiomodulation or photoactivation or photomodulation, and mesenchymal cells. All irradiations applied in vitro, on human mesenchymal cells, with wavelengths ranged from 600 to 1000 nm.

Results

The search yielded 42 original articles and five reviews. Finally, 37 articles were selected with a total of 43 procedures. Three procedures (7.0%) from 620 to 625 nm; 26 procedures (60.5%) from 625 to 740 nm; 13 procedures (30.2%) from 740 to 1000 nm; and one procedure (2.3%) with combinations of wavelengths. Of the 43 procedures, 14 assessed cell viability (n = 14/43, 32.6%); 34 cell proliferation (n = 34/43, 79.1%); 19 cell differentiation (n = 19/43, 44.2%); and three cell migration (n = 3/43, 7.0%).

Conclusions

Photobiomodulation is a promising technology that can impact on cell viability, differentiation, proliferation, or migration, leading to enhance its regenerative capacity.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Chen L, Tredget EE, Wu PYG, Wu Y, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS ONE 9(9):1–12

    Article  CAS  Google Scholar 

  3. 3.

    Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109(12):1543–1549

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lindner U, Kramer J, Rohwedel J, Schlenke P (2010) Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus Med Hemother 37(2):75–83

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G (2017) Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci 18(10):2087

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  6. 6.

    Ahrabi B, Tavirani MR, Khoramgah MS, Noroozian M, Darabi S, Khoshsirat S et al (2019) The effect of photobiomodulation therapy on the differentiation, proliferation, and migration of the mesenchymal stem cell: a review. J Lasers Med Sci 10(4):S96-103

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR (2017) Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells. Sci Rep 7(1):1–10

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Han B, Fan J, Liu L, Tian J, Gan C, Yang Z et al (2019) Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers Med Sci 34(1):1–10

    PubMed  Article  Google Scholar 

  9. 9.

    Fallahnezhad S, Jajarmi V, Shahnavaz S, Amini A, Ghoreishi SK, Kazemi M et al (2019) Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 35(3):557–566

    PubMed  Article  Google Scholar 

  10. 10.

    Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers: vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–17

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Kouhkheil R, Fridoni M, Abdollhifar MA, Amini A, Bayat S, Ghoreishi SK et al (2019) Impact of photobiomodulation and condition medium on mast cell counts, degranulation, and wound strength in infected skin wound healing of diabetic rats. Photobiomodul, Photomed, Laser Surg 37(11):706–714

    Article  Google Scholar 

  12. 12.

    Kim K, Lee J, Jang H, Park S, Na J, Myung JK et al (2019) Photobiomodulation enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy. Int J Mol Sci 20(5):1–19

    Google Scholar 

  13. 13.

    De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):1–37

    Article  CAS  Google Scholar 

  14. 14.

    Park IS, Chung PSAJ (2014) Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice. Biomaterials 35(34):9280–9289

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Kim H, Choi K, Kweon OKKW (2012) Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J Dermatol Sci 68(3):149–156

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Zare F, Bayat M, Aliaghaei A, Piryaei A (2020) Photobiomodulation therapy compensate the impairments of diabetic bone marrow mesenchymal stem cells. Lasers Med Sci 35(3):547–556

    PubMed  Article  Google Scholar 

  17. 17.

    Park IS, Mondal A, Chung PS, Ahn JC (2015) Vascular regeneration effect of adipose-derived stem cells with light-emitting diode phototherapy in ischemic tissue. Lasers Med Sci 30(2):533–541

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    El Gammal ZH, Zaher AM, El-Badri N (2017) Effect of low-level laser-treated mesenchymal stem cells on myocardial infarction. Lasers Med Sci 32(7):1637–1646

    PubMed  Article  Google Scholar 

  19. 19.

    Fekrazad R, Eslaminejad MB, Shayan AM, Kalhori KAM, Abbas FM, Taghiyar L et al (2016) Effects of photobiomodulation and mesenchymal stem cells on articular cartilage defects in a rabbit model. Photomed Laser Surg 34(11):543–549

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Vicenti G, Bizzoca D, Caruso I, Nappi VS, Giancaspro G, Carrozzo M et al (2018) New insights into the treatment of non-healing diabetic foot ulcers. J Biol Regul Homeost Agents 32(6):15–21

    CAS  PubMed  Google Scholar 

  21. 21.

    Marques MM, Diniz IMA, De Cara SPHM, Pedroni ACF, Abe GL, D’Almeida-Couto RS et al (2016) Photobiomodulation of dental derived mesenchymal stem cells: a systematic review. Photomed Laser Surg 34(11):500–508

    PubMed  Article  Google Scholar 

  22. 22.

    Odinokov D, Hamblin MR (2018) Aging of lymphoid organs: Can photobiomodulation reverse age-associated thymic involution via stimulation of extrapineal melatonin synthesis and bone marrow stem cells? J Biophotonics 11(8):1–13

    Article  CAS  Google Scholar 

  23. 23.

    Ong WK, Chen HF, Tsai CT, Fu YJ, Wong YS, Yen DJ et al (2013) The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials 34(8):1911–1920

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Yang D, Yi W, Wang E, Wang M (2016) Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci Rep 6:1–7

    Article  CAS  Google Scholar 

  25. 25.

    Babaee A, Nematollahi-Mahani SN, Dehghani-Soltani S, Shojaei M, Ezzatabadipour M (2019) Photobiomodulation and gametogenic potential of human Wharton’s jelly-derived mesenchymal cells. Biochem Biophys Res Commun 514(1):239–245

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Li W-T, Chen H-L, Wang C (2006) Effect of light emitting diode irradiation on proliferation of human bone marrow mesenchymal stem cells. J Med Biol Eng 26(1):35–42

    Google Scholar 

  27. 27.

    Zare F, Moradi A, Fallahnezhad S, Ghoreishi SK, Amini A, Chien S et al (2019) Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol B Biol 201:111658

    CAS  Article  Google Scholar 

  28. 28.

    Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23(2):161–166

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Wang J, Huang W, Wu Y, Hou J, Nie Y, Gu H et al (2012) MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5. Stem Cells Dev 21(13):2508–2519

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Chen H, Wu H, Yin H, Wang J, Dong H, Chen Q et al (2019) Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci 34(4):667–675

    PubMed  Article  Google Scholar 

  32. 32.

    Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C (2018) Red (635 nm), near-infrared (808 nm) and violet-blue (405 nm) photobiomodulation potentiality on human osteoblasts and mesenchymal stromal cells: a morphological and molecular in vitro study. Int J Mol Sci 19(7):1–23

    Article  CAS  Google Scholar 

  33. 33.

    Mvula B, Moore TJ, Abrahamse H (2009) Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci 25(1):33–39

    PubMed  Article  Google Scholar 

  34. 34.

    de Villiers JA, Houreld NN, Abrahamse H (2011) Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev Rep 7(4):869–882

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Bloise N, Ceccarelli G, Minzioni P, Vercellino M, Benedetti L, De AMGC et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt 18(12):128006

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    de Andrade ALM, Luna GF, Brassolatti P, Leite MN, Parisi JR, de Oliveira Leal ÂM et al (2019) Photobiomodulation effect on the proliferation of adipose tissue mesenchymal stem cells. Lasers Med Sci 34(4):677–683

    PubMed  Article  Google Scholar 

  37. 37.

    de Oliveira TS, Serra AJ, Manchini MT, Bassaneze V, Krieger JE, de Carvalho PDTC, Antunes DE, Bocalini DS, Tucci PJF, Silva JA (2015) Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency. Lasers n Med Sci 30(1):217–223

    Article  Google Scholar 

  38. 38.

    Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L et al (2018) Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 233(6):4907–4918

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Eduardo FDP, Bueno DF, De Freitas PM, Marques MM, Passos-Bueno MR, Eduarde CDP et al (2008) Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438

    Article  Google Scholar 

  40. 40.

    Ferreira LS, Diniz IMA, Maranduba CMS, Miyagi SPH, Rodrigues MFSD, Moura-Netto C et al (2019) Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers Med Sci 34(4):659–666

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Garrido PR, Pedroni ACF, Cury DP, Moreira MS, Rosin F, Sarra G et al (2018) Effects of photobiomodulation therapy on the extracellular matrix of human dental pulp cell sheets. J Photochem Photobiol B Biol 2019(194):149–157

    Google Scholar 

  42. 42.

    Pereira LO, Longo JPF, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57(8):1079–1085

    PubMed  Article  Google Scholar 

  43. 43.

    Soares DM, Ginani F, Henriques ÁG, Barboza CAG (2015) Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 30(3):1171–1174

    PubMed  Article  Google Scholar 

  44. 44.

    Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264

    PubMed  Article  Google Scholar 

  45. 45.

    Park IS, Chung PS, Ahn JC, Leproux A (2017) Human adipose-derived stem cell spheroid treated with photobiomodulation irradiation accelerates tissue regeneration in mouse model of skin flap ischemia. Lasers Med Sci 32(8):1737–1746

    PubMed  Article  Google Scholar 

  46. 46.

    Yin K, Zhu R, Wang S, Zhao RC (2017) Low-level laser effect on proliferation, migration, and antiapoptosis of mesenchymal stem cells. Stem Cells Dev 26(10):762–775

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Lenna S, Bellotti C, Duchi S, Martella E, Columbaro M, Dozza B et al (2020) Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. J Exp Clin Cancer Res 39(1):1–15

    Article  CAS  Google Scholar 

  48. 48.

    Diniz IMA, Matos AB, Marques MM (2015) Laser phototherapy enhances mesenchymal stem cells survival in response to the dental adhesives. Sci World J 2015:1–6

    Article  Google Scholar 

  49. 49.

    Nurković J, Zaletel I, Nurković S, Hajrović Š, Mustafić F, Isma J et al (2017) Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells. Lasers Med Sci 32(1):151–160

    PubMed  Article  Google Scholar 

  50. 50.

    Arany PR, Huang GX, Gadish O, Feliz J, Weaver JC, Kim J et al (2014) Multi-lineage MSC differentiation via engineered morphogen fields. J Dent Res 93(12):1250–1257

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci 27(2):423–430

    PubMed  Article  Google Scholar 

  52. 52.

    Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Turrioni APS, Basso FG, Montoro LA, De Almeida LDFD, Costa CADS, Hebling J (2014) Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth. J Dent 42(10):1292–1299

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Amini A, Pouriran R, Abdollahifar MA, Abbaszadeh HA, Ghoreishi SK, Chien S et al (2018) Stereological and molecular studies on the combined effects of photobiomodulation and human bone marrow mesenchymal stem cell conditioned medium on wound healing in diabetic rats. J Photochem Photobiol B Biol 182:42–51

    CAS  Article  Google Scholar 

  55. 55.

    Bagheri M, Amini A, Abdollahifar MA, Ghoreishi SK, Piryaei A, Pouriran R et al (2018) Effects of photobiomodulation on degranulation and number of mast cells and wound strength in skin wound healing of streptozotocin-induced diabetic rats. Photomed Laser Surg 36(8):415–423

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Jawad MM, Husein A, Azlina A, Alam MK, Hassan R, Shaari R (2013) Effect of 940 nm low-level laser therapy on osteogenesis in vitro. J Biomed Opt 18(12):128001

    PubMed  Article  Google Scholar 

  57. 57.

    Mvula B, Abrahamse H (2016) Differentiation potential of adipose-derived stem cells when cocultured with smooth muscle cells, and the role of low-intensity laser irradiation. Photomed Laser Surg 34(11):509–515

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Horvát-Karajz K, Balogh Z, Kovács V, Hámori A, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41(6):463–469

    PubMed  Article  Google Scholar 

  59. 59.

    Kim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY et al (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222

    PubMed  Article  Google Scholar 

  60. 60.

    Rosso MPDO, Buchaim DV, Pomini KT, Coletta BBD, Reis CHB, Pilon JPG, Duarte Júnior G, Buchaim RL (2019) Photobiomodulation therapy (PBMT) applied in bone reconstructive surgery using bovine bone grafts: a systematic review. Materials 12(24):4051

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  61. 61.

    Bhardwaj S (2016) Low level laser therapy in the treatment of intra-osseous defect—a case report. J Clin Diagnostic Res. 10(3):10–12

    Google Scholar 

  62. 62.

    Rosso MPDO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL (2018) Photobiomodulation therapy (PBMT) in peripheral nerve regeneration: a systematic review. Bioengineering 5(2):44

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  63. 63.

    Rosenberg N, Gendelman R, Noofi N (2020) Photobiomodulation of human osteoblast-like cells in vitro by low-intensity-pulsed LED light. FEBS Open Bio. 10(7):1276–1287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Fekrazad R, Asefi S, Eslaminejad MB, Taghiyar L, Bordbar S, Hamblin MR (2019) Correction to: Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 34(1):115–126. https://doi.org/10.1007/s10103-018-2620-8

    Article  PubMed  Google Scholar 

  65. 65.

    Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733

    PubMed  Article  Google Scholar 

  66. 66.

    Bouvet-Gerbettaz S, Merigo E, Rocca JP, Carle GF, Rochet N (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoelasts. Lasers Surg Med 41(4):291–297

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elena Sánchez-Vizcaíno Mengual.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights

This article is based on previously conducted studies and does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinto, H., Goñi Oliver, P. & Sánchez-Vizcaíno Mengual, E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesth Plast Surg (2021). https://doi.org/10.1007/s00266-021-02173-y

Download citation

Keywords

  • Photobiomodulation
  • Mesenchymal cells
  • Low-level laser
  • Cell conditioning
  • Irradiation
  • Cell regeneration