Skip to main content

Advertisement

Log in

A Comprehensive Review of Concentrated Growth Factors and Their Novel Applications in Facial Reconstructive and Regenerative Medicine

  • Review
  • Special Topics
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Concentrated growth factors (CGFs) are the latest generation of platelet concentrates. The objective of developing CGF is to increase therapeutic efficacy. However, few studies have supported the superiority of CGF in composition and efficacy. The reconstruction and regeneration process is complicated and long term, whereas bioactivity of CGF is not durable. The purpose of this review is threefold. The first is to recommend more comparative studies between CGF and other platelet concentrates. The second is to constitute a continuous drug delivery system by combining CGF with other biomaterials. Finally, the novel use of CGF in facial regenerative and reconstructive medicine will be highlighted.

Methods

A comprehensive review of literature regarding the use of CGF in facial regenerative and reconstructive medicine was performed. Based on the inclusion and exclusion criteria, a total of 135 articles were included.

Results

The use of CGF involving facial rejuvenation, cartilage grafting, facial bone defects, facial peripheral nerve injury and wounding is reviewed. The reconstructive and regenerative principles lie in firm fibrin scaffolds and continuous in situ delivery of multiple growth factors.

Conclusions

CGF represents an advance in personalized medicine concept. However, the current scientific evidences about the use of CGF are limited. More basic and clinical studies should be conducted to understand the characteristics and clinical application of CGF.

Level of Evidence V

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anitua E, Sánchez M, Nurden AT, Nurden P, Orive G, Andía I (2006) New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol 24(5):227–234

    Article  CAS  PubMed  Google Scholar 

  2. Anitua E, Alkhraisat MH, Orive G (2012) Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J Control Release 157(1):29–38

    Article  CAS  PubMed  Google Scholar 

  3. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27(3):158–167

    Article  CAS  PubMed  Google Scholar 

  4. Fioravanti C, Frustaci I, Armellin E, Condò R, Arcuri C, Cerroni L (2016) Autologous blood preparations rich in platelets, fibrin and growth factors. Oral Implantol 8(4):96–113

    Google Scholar 

  5. Zhao YH, Zhang M, Liu NX, Lv X, Zhang J, Chen FM et al (2013) The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation. Biomaterials 34(22):5506–5520

    Article  CAS  PubMed  Google Scholar 

  6. Borsani E, Bonazza V, Buffoli B (2015) Biological characterization and in vitro effects of human concentrated growth factor preparation: an innovative approach to tissue regeneration. Biol Med 7(5):256

    Article  CAS  Google Scholar 

  7. Yang KC, Wang CH, Chang HH, Chan WP, Chi CH et al (2012) Fibrin glue mixed with platelet-rich fibrin as a scaffold seeded with dental bud cells for tooth regeneration. J Tissue Eng Regen Med 6(10):777–785

    Article  CAS  PubMed  Google Scholar 

  8. Danielsen PL, Agren MS, Jorgensen LN (2010) Platelet-rich fibrin versus albumin in surgical wound repair: a randomized trial with paired design. Ann Surg 251(5):825–831

    Article  PubMed  Google Scholar 

  9. Jiménez-Aristizabal RF, López C, Álvarez ME, Giraldo C, Prades M (2017) Carmona JU4. Long-term cytokine and growth factor release from equine platelet-rich fibrin clots obtained with two different centrifugation protocols. Cytokine 97:149–155

    Article  PubMed  CAS  Google Scholar 

  10. Anitua E, Pelacho B, Prado R, Aguirre JJ, Sánchez M, Padilla S (2015) Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia. J Control Release 202:31–39

    Article  CAS  PubMed  Google Scholar 

  11. Coetzee JC, Pomeroy GC, Watts JD, Barrow C (2005) The use of autologous concentrated growth factors to promote syndesmosis fusion in the Agility total ankle replacement. A preliminary study. Foot Ankle Int 26(10):840–846

    Article  PubMed  Google Scholar 

  12. Lei L, Yu Y, Han J, Shi D, Sun W, Zhang D et al (2019) Quantification of growth factors in advanced platelet-rich fibrin and concentrated growth factors and their clinical efficiency as adjunctive to the GTR procedure in periodontal intrabony defects. J Periodontol. https://doi.org/10.1002/jper.19-0290

    Article  PubMed  Google Scholar 

  13. Jun H, Lei D, Qifang Y, Yuan X, Deqin Y (2018) Effects of concentrated growth factors on the angiogenic properties of dental pulp cells and endothelial cells: an in vitro study. Braz Oral Res 32:e48

    Article  PubMed  Google Scholar 

  14. Masuki H, Okudera T, Watanebe T, Suzuki M, Nishiyama K, Okudera H et al (2016) Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent 2(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Wang J, Yu L, Zhou J, Zheng D, Zhang B (2018) Effect of concentrated growth factor (CGF) on the promotion of osteogenesis in bone marrow stromal cells (BMSC) in vivo. Sci Rep 8(1):5876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yılmaz O, Özmeriç A, Alemdaroğlu KB, Celepli P, Hucumenoğlu S, Sahin Ö (2018) Effects of concentrated growth factors (CGF) on the quality of the induced membrane in Masquelet’s technique-An experimental study in rabbits. Injury 49(8):1497–1503

    Article  PubMed  Google Scholar 

  17. Isler SC, Soysal F, Ceyhanlı T, Bakırarar B, Unsal B (2018) Regenerative surgical treatment of peri-implantitis using either a collagen membrane or concentrated growth factor: a 12-month randomized clinical trial. Clin Implant Dent Relat Res. 20(5):703–712

    Article  PubMed  Google Scholar 

  18. Yu B, Wang Z (2014) Effect of concentrated growth factors on beagle periodontal ligament stem cells in vitro. Mol Med Rep 9(1):235–242

    Article  CAS  PubMed  Google Scholar 

  19. Tadić A, Puskar T, Petronijević B (2014) Application of fibrin rich blocks with concentrated growth factors in pre-implant augmentation procedures. Med Pregl 67(5–6):177–180

    Article  PubMed  Google Scholar 

  20. Pirpir C, Yilmaz O, Candirli C, Balaban E (2017) Evaluation of effectiveness of concentrated growth factor on osseointegration. Int J Implant Dent 3(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park SH, Park KS, Cho SA (2016) Comparison of removal torques of SLActive® implant and blasted, laser-treated titanium implant in rabbit tibia bone healed with concentrated growth factor application. J Adv Prosthodont 8(2):110–115

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li R, Liu Y, Xu T, Zhao H, Hou J, Wu Y et al (2019) The additional effect of autologous platelet concentrates to coronally advanced flap in the treatment of gingival recessions: a systematic review and meta-analysis. Biomed Res Int 2019:2587245

    PubMed  PubMed Central  Google Scholar 

  23. Talaat WM, Ghoneim MM, Salah O, Adlly OA (2018) Autologous bone marrow concentrates and concentrated growth factors accelerate bone regeneration after enucleation of mandibular pathologic lesions. J Craniofac Surg 29(4):992–997

    Article  PubMed  Google Scholar 

  24. Creaney L (2011) Platelet-rich plasma and the biological complexity of tissue regeneration. Br J Sports Med 45(8):611

    Article  PubMed  Google Scholar 

  25. Liu HY, Huang CF, Lin TC, Tsai CY, Tina Chen SY, Liu A et al (2014) Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma. Biomaterials 35(37):9767–9776

    Article  CAS  PubMed  Google Scholar 

  26. Assoian RK, Grotendorst GR, Miller DM, Sporn MB (1984) Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature 309(5971):804–806

    Article  CAS  PubMed  Google Scholar 

  27. Eppley BL, Pietrzak WS, Blanton M (2006) Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg 118(6):147–159

    Article  CAS  Google Scholar 

  28. He L, Lin Y, Hu X, Zhang Y, Wu H (2009) A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(5):707–713

    Article  PubMed  Google Scholar 

  29. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M (2006) The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 17(2):212–221

    Article  PubMed  Google Scholar 

  30. Hsu CW, Yuan K, Tseng CC (2009) The negative effect of platelet-rich plasma on the growth of human cells is associated with secreted thrombospondin-1. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(2):185–192

    Article  PubMed  Google Scholar 

  31. Laudy AB, Bakker EW, Rekers M, Moen MH (2015) Efficacy of platelet-rich plasma injections in osteoarthritis of the knee: a systematic review and meta-analysis. Br J Sports Med 49(10):657–672

    Article  PubMed  Google Scholar 

  32. Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of sites for implants. Int J Oral Maxillofac Implants 14(4):529–535

    CAS  PubMed  Google Scholar 

  33. Etxebarria J, Sanz-Lázaro S, Hernáez-Moya R, Freire V, Durán JA, Morales MC et al (2017) Serum from plasma rich in growth factors regenerates rabbit corneas by promoting cell proliferation, migration, differentiation, adhesion and limbal stemness. Acta Ophthalmol 95(8):e693–e705

    Article  CAS  PubMed  Google Scholar 

  34. Choukroun J, Adda F, Schoefer C, Vervelle A (2001) An opportunity in perio-implantology: the PRF. Implantodontie 42:55–62

    Google Scholar 

  35. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):e37–e44

    Article  PubMed  Google Scholar 

  36. Ulusoy AT, Turedi I, Cimen M, Cehreli ZC (2019) Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: a prospective randomized trial. J Endod 45(5):560–566

    Article  PubMed  Google Scholar 

  37. Kovacevic M, Riedel F, Wurm J, Bran GM (2017) Cartilage scales embedded in fibrin gel. Facial Plast Surg 33(2):225–232

    Article  CAS  PubMed  Google Scholar 

  38. Di Liddo R, Bertalot T, Borean A, Pirola I, Argentoni A, Schrenk S et al (2018) Leucocyte and platelet-rich fibrin: a carrier of autologous multipotent cells for regenerative medicine. J Cell Mol Med 22(3):1840–1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barbon S, Stocco E, Macchi V, Contran M, Grandi F, Borean A et al (2019) Platelet-rich fibrin scaffolds for cartilage and tendon regenerative medicine: from bench to bedside. Int J Mol Sci 20(7):1701

    Article  CAS  PubMed Central  Google Scholar 

  40. Wend S, Kubesch A, Orlowska A, Al-Maawi S, Zender N, Dias A et al (2017) Reduction of the relative centrifugal force influences cell number and growth factor release within injectable PRF-based matrices. J Mater Sci Mater Med 28(12):188

    Article  PubMed  CAS  Google Scholar 

  41. Kawase T, Tanaka T (2017) An updated proposal for terminology and classification of platelet-rich fibrin. Regen Ther 7:80–81

    Article  PubMed  PubMed Central  Google Scholar 

  42. Corigliano M, Sacco L, Edoardo B (2010) CGF-una proposta terapeutica per la medicina rigenerativa. Odontoiatria 1:69–81

    Google Scholar 

  43. Illingworth KD, Musahl V, Lorenz SGF, Fu FH (2010) Use of fibrin clot in the knee. Oper Tech Ortho 20(2):90–97

    Article  Google Scholar 

  44. Isobe K, Watanebe T, Kawabata H, Kitamura Y, Kawase T (2017) Mechanical and degradation properties of advanced platelet-rich fibrin (APRF), concentrated growth factors (CGF), and platelet-poor plasma-derived fibrin (PPTF). Int J Implant Dent 3(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim TH, Kim SH, Sándor GK, Kim YD (2014) Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth, factor (CGF) in rabbit-skull defect healing. Arch Oral Biol 59(5):550–558

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen TH, Palankar R, Bui VC, Medvedev N, Greinacher A, Delcea M (2016) Rupture forces among human blood platelets at different degrees of activation. Sci Rep 6:25402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin SL, Wu SL, Tsai CC, Ko SY, Chiang WF, Yang JW (2016) The use of solid-phase cconcentrated growth factors for surgical defects in the treatment of dysplastic lesions of the oral mucosa. J Oral Maxillofac Surg 74(12):2549–2556

    Article  PubMed  Google Scholar 

  48. Qiao J, An N (2017) Effect of concentrated growth factors on function and Wnt3a expression of human periodontal ligament cells in vitro. Platelets 28(3):281–286

    Article  CAS  PubMed  Google Scholar 

  49. Watanabe T, Isobe K, Suzuki T, Kawabata H, Nakamura M, Tsukioka T et al (2017) An evaluation of the accuracy of the subtraction method used for determining platelet counts in advanced platelet-rich fibrin and concentrated growth factor preparations. Dent J (Basel) 5(1):7

    Article  Google Scholar 

  50. Qiao J, Duan JY, Chu Y, Sun CZ (2017) Effect of concentrated growth factors on the treatment of degree II furcation involvements of mandibular molars. Beijing Da Xue Xue Bao Yi Xue Ban 49(1):36–42

    CAS  PubMed  Google Scholar 

  51. Bonazza V, Borsani E, Buffoli B, Castrezzati S, Rezzani R, Rodella LF (2016) How the different material and shape of the blood collection tube influences the Concentrated Growth Factors production. Microsc Res Tech 79(12):1173–1178

    Article  CAS  PubMed  Google Scholar 

  52. Yang JW, Huang YC, Wu SL, Ko SY, Tsai CC (2017) Clinical efficacy of a centric relation occlusal splint and intra-articular liquid phase concentrated growth factor injection for the treatment of temporomandibular disorders. Medicine (Baltimore) 96(11):e6302

    Article  Google Scholar 

  53. Kim JM, Sohn DS, Bae MS, Moon JW, Lee JH, Park IS (2014) Flapless transcrestal sinus augmentation using hydrodynamic piezoelectric internal sinus elevation with autologous concentrated growth factors alone. Implant Dent 23(2):168–174

    Article  PubMed  Google Scholar 

  54. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J et al (2014) Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol 40(6):679–689

    Article  PubMed  Google Scholar 

  55. Choukroun J (2014) Advanced PRF & i-PRF: platelet concentrates or blood concentrates? J Periodont Med Clan Practice 1:3

    Google Scholar 

  56. Kobayashi E, Flückiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B et al (2016) Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig 20(9):2353–2360

    Article  PubMed  Google Scholar 

  57. Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J (2017) Optimized platelet-rich fibrin with the low-speed concept: growth factor release, biocompatibility, and cellular response. J Periodontol 88(1):112–121

    Article  CAS  PubMed  Google Scholar 

  58. Yu M, Wang XJ, Liu Y, Qiao J (2019) Cytokine release kinetics of concentrated growth factors in different scaffolds. Clin Oral Investig 23(4):1663–1671

    Article  PubMed  Google Scholar 

  59. Bonazza V, Hajistilly C, Patel D, Patel J, Woo R, Cocchi MA et al (2018) Growth factors release from concentrated Growth factors: effect of β-tricalcium phosphate addition. J Craniofac Surg 29(8):2291–2295

    Article  PubMed  Google Scholar 

  60. Qin J, Wang L, Sun Y, Sun X, Wen C, Shahmoradi M et al (2016) Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Int J Mol Med 37(2):493–500

    Article  CAS  PubMed  Google Scholar 

  61. Qin J, Wang L, Zheng L, Zhou X, Zhang Y, Yang T et al (2016) Concentrated growth factor promotes Schwann cell migration partly through the integrin β1-mediated activation of the focal adhesion kinase pathway. Int J Mol Med 37(5):1363–1370

    Article  CAS  PubMed  Google Scholar 

  62. Park HC, Kim SG, Oh JS, You JS, Kim JS, Lim SC et al (2016) Early bone formation at a femur defect using CGF and PRF Grafts in Adult Dogs: a Comparative Study. Implant Dent 25(3):387–393

    Article  PubMed  Google Scholar 

  63. Hong S, Li L, Cai W, Jiang B (2019) The potential application of concentrated growth factor in regenerative endodontics. Int Endod J 52(5):646–655

    Article  CAS  PubMed  Google Scholar 

  64. Rodella LF, Favero G, Boninsegna R, Buffoli B, Labanca M, Scarì G et al (2011) Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc Res Tech 74(8):772–777

    Article  CAS  PubMed  Google Scholar 

  65. Xu F, Qiao L, Zhao Y, Chen W, Hong S, Pan J et al (2019) The potential application of concentrated growth factor in pulp regeneration: an in vitro and in vivo study. Stem Cell Res Ther 10(1):134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Scherer SS, Tobalem M, Vigato E, Heit Y, Modarressi A, Hinz B et al (2012) Nonactivated versus thrombin-activated platelets on wound healing and fibroblast-to-myofibroblast differentiation in vivo and in vitro. Plast Reconstr Surg 129(1):46e–54e

    Article  PubMed  CAS  Google Scholar 

  67. Qiao J, An N, Ouyang X (2017) Quantification of growth factors in different platelet concentrates. Platelets 28(8):774–778

    Article  CAS  PubMed  Google Scholar 

  68. Huang L, Zou R, He J, Ouyang K, Piao Z (2018) Comparing osteogenic effects between concentrated growth factors and the acellular dermal matrix. Braz Oral Res 32:e29

    Article  PubMed  Google Scholar 

  69. Dohan Ehrenfest DM, Pinto NR, Pereda A, Jiménez P, Corso MD, Kang BS et al (2018) The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 29(2):171–184

    Article  CAS  PubMed  Google Scholar 

  70. Ma X, Ding L, Tang S, Li T, Pei J, Li Y (2018) Effects of concentrated growth factors on proliferation and osteogenic differentiation in Beagle adipose-derived stem cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban 43(1):1–6

    PubMed  Google Scholar 

  71. Zheng L, Wang L, Qin J (2015) New biodegradable implant material containing hydrogel with growth factors of lyophilized PRF in combination with an nHA/PLGA scaffold. J Hard Tissue Biol 24(1):54–60

    Article  Google Scholar 

  72. Takahashi A, Tsujino T, Yamaguchi S, Isobe K, Watanabe T, Kitamura Y et al (2019) Distribution of platelets, transforming growth factor-β1, platelet-derived growth factor-BB, vascular endothelial growth factor and matrix metalloprotease-9 in advanced platelet-rich fibrin and concentrated growth factor matrices. J Investig Clin Dent 10(4):e12458

    Article  PubMed  Google Scholar 

  73. Senzel L, Gnatenko DV, Bahou WF (2009) The platelet proteome. Curr Opin Hematol 16:329–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McCarrel TM, Mall NA, Lee AS, Lee AS, Cole BJ, Butty DC et al (2014) Considerations for the use of platelet-rich plasma in orthopedics. Sports Med 44(8):1025–1036

    Article  PubMed  Google Scholar 

  75. Schaaf H, Streckbein P, Lendeckel S, Heidinger KS, Rehmann P, Boedeker RH et al (2008) Sinus lift augmentation using autogenous bone grafts and platelet-rich plasma: radiographic results. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(5):673–678

    Article  PubMed  Google Scholar 

  76. Casati MZ, de Vasconcelos Gurgel BC, Gonçalves PF, Pimentel SP, da Rocha Nogueira Filho G, Nociti FH Jr et al (2007) Platelet-rich plasma does not improve bone regeneration around peri-implant bone defects–a pilot study in dogs. Int J Oral Maxillofac Surg 36(2):132–136

    Article  CAS  PubMed  Google Scholar 

  77. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J et al (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):e45–e50

    Article  PubMed  Google Scholar 

  78. Kobayashi M, Kawase T, Horimizu M, Okuda K, Wolff LF, Yoshie H (2012) A proposed protocol for the standardized preparation of PRF membranes for clinical use. Biologicals 40(5):323–329

    Article  CAS  PubMed  Google Scholar 

  79. Honda H, Tamai N, Naka N, Yoshikawa H, Myoui A (2013) Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model. J Artif Organs 16(3):305–315

    Article  CAS  PubMed  Google Scholar 

  80. Wang L, Wan M, Li Z, Zhong N, Liang D, Ge L (2019) A comparative study of the effects of concentrated growth factors in two different forms on osteogenesis in vitro. Mol Med Rep 20(2):1039–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen X, Chen Y, Hou Y, Song P, Zhou M, Nie M et al (2019) Modulation of proliferation and differentiation of gingiva-derived mesenchymal stem cells by concentrated growth factors: potential implications in tissue engineering for dental regeneration and repair. Int J Mol Med 44(1):37–46

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shu DY, Hutcheon AEK, Zieske JD, Guo X (2019) Epidermal growth factor stimulates transforming growth factor-beta receptor type II expression in corneal epithelial cells. Sci Rep 9(1):8079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wang C, Liu Y, He D (2019) Diverse effects of platelet-derived growth factor-BB on cell signaling pathways. Cytokine 113:13–20

    Article  CAS  PubMed  Google Scholar 

  84. Fierro F, Illmer T, Jing D, Schleyer E, Ehninger G, Boxberger S et al (2007) Inhibition of platelet-derived growth factor receptorbeta by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Prolif 40(3):355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao GZ, Zhang LQ, Liu Y, Fang J, Li HZ, Gao KH et al (2016) Effects of platelet-derived growth factor on chondrocyte proliferation, migration and apoptosis via regulation of GIT1 expression. Mol Med Rep 14(1):897–903

    Article  CAS  PubMed  Google Scholar 

  86. Celotti F, Colciago A, Negri-Cesi P, Pravettoni A, Zaninetti R, Sacchi MC (2006) Effect of platelet-rich plasma on migration and proliferation of SaOS-2 osteoblasts: role of platelet-derived growth factor and transforming growth factor-beta. Wound Repair Regen 14(2):195–202

    Article  PubMed  Google Scholar 

  87. Wu LW, Chen WL, Huang SM, Chan JY (2019) Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing. FASEB J 33(2):2388–2395

    Article  CAS  PubMed  Google Scholar 

  88. Ball SG, Shuttleworth CA, Kielty CM (2007) Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 177(3):489–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bonazza V, Borsani E, Buffoli B, Parolini S, Inchingolo F, Rezzani R et al (2018) In vitro treatment with concentrated growth factors (CGF) and sodium orthosilicate positively affects cell renewal in three different human cell lines. Cell Biol Int 42(3):353–364

    Article  CAS  PubMed  Google Scholar 

  90. Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M (2014) Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 5(4):103

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mohammadi R, Esmaeil-Sani Z, Amini K (2013) Effect of local administration of insulin-like growth factor I combined with inside-out artery graft on peripheral nerve regeneration. Injury 44(10):1295–1301

    Article  PubMed  Google Scholar 

  92. Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S (1992) Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 92(2–3):141–149

    Article  CAS  PubMed  Google Scholar 

  93. Krstic J, Trivanovic D, Obradovic H, Kukolj T, Bugarski D, Santibanez JF (2018) Regulation of mesenchymal stem cell differentiation by transforming growth factor beta superfamily. Curr Protein Pept Sci 19(12):1138–1154

    Article  CAS  PubMed  Google Scholar 

  94. Feldman DS, McCauley JF (2018) Mesenchymal stem cells and transforming growth factor-β3 (TGF-β3) to enhance the regenerative ability of an albumin Scaffold in full thickness wound healing. J Funct Biomater. https://doi.org/10.3390/jfb9040065

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zeng F, Harris RC (2014) Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol 28:2–11

    Article  CAS  PubMed  Google Scholar 

  96. Wöltje M, Böbel M, Bienert M, Neuss S, Aibibu D, Cherif C (2018) Functionalized silk fibers from transgenic silkworms for wound healing applications: surface presentation of bioactive epidermal growth factor. J Biomed Mater Res A 106(10):2643–2652

    Article  PubMed  CAS  Google Scholar 

  97. Ko Y, Stiebler H, Nickenig G, Wieczorek AJ, Vetter H, Sachinidis A (1993) Synergistic action of angiotensin II, insulin-like growth factor-I, and transforming growth factor-beta on platelet-derived growth factor-BB, basic fibroblastic growth factor, and epidermal growth factor-induced DNA synthesis in vascular smooth muscle cells. Am J Hypertens 6(6 Pt 1):496–499

    Article  CAS  PubMed  Google Scholar 

  98. Chang HM, Qiao J, Leung PC (2016) Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 23(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dumic-Cule I, Peric M, Kucko L, Grgurevic L, Pecina M, Vukicevic S (2018) Bone morphogenetic proteins in fracture repair. Int Orthop 42(11):2619–2626

    Article  PubMed  Google Scholar 

  100. Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 8(6):a021899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cui ZK, Fan J, Kim S, Bezouglaia O, Fartash A, Wu BM et al (2015) Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. J Control Release 217:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim HJ, Han MA, Shin JY, Jeon JH, Lee SJ, Yoon MY et al (2019) Intra-articular delivery of synovium-resident mesenchymal stem cells via BMP-7-loaded fibrous PLGA scaffolds for cartilage repair. J Control Release 302:169–180

    Article  CAS  PubMed  Google Scholar 

  103. Cabrera-Ramírez JO, Puebla-Mora AG, González-Ojeda A, García-Martínez D, Cortés-Lares JA, Márquez-Valdés AR et al (2017) Platelet-rich plasma for the treatment of photodamage of the skin of the hands. Actas Dermosifiliogr 108(8):746–751

    Article  PubMed  Google Scholar 

  104. Elnehrawy NY, Ibrahim ZA, Eltoukhy AM, Nagy HM (2017) Assessment of the efficacy and safety of single platelet-rich plasma injection on different types and grades of facial wrinkles. J Cosmet Dermatol 16(1):103–111

    Article  PubMed  Google Scholar 

  105. Kamakura T, Kataoka J, Maeda K, Teramachi H, Mihara H, Miyata K et al (2015) Platelet-rich plasma with basic fibroblast growth factor for Treatment of wrinkles and depressed areas of the skin. Plast Reconstr Surg 136(5):931–939

    Article  CAS  PubMed  Google Scholar 

  106. Wang X, Yang Y, Zhang Y, Miron RJ (2019) Fluid platelet-rich fibrin stimulates greater dermal skin fibroblast cell migration, proliferation, and collagen synthesis when compared to platelet-rich plasma. J Cosmet Dermatol. https://doi.org/10.1111/jocd.12955

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wang X, Chen XP, Zhao QM, Lin JD, Wang M, Zheng XY et al (2018) Clinical observation of concentrated growth factor (CGF) improving periorbital wrinkles. Chin J Aesth Plast Surg 29(7):402–405 (in Chinese)

    Google Scholar 

  108. Chen J, Jiao D, Zhang M, Zhong S, Zhang T, Ren X et al (2019) Concentrated growth factors can inhibit photoaging damage induced by ultraviolet A (UVA) on the human dermal fibroblasts in vitro. Med Sci Monit 25:3739–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D et al (2019) Microtia patients: auricular chondrocyte ECM is promoted by CGF through IGF-1 activation of the IGF-1R/PI3K/AKT pathway. J Cell Physiol 234(12):21817–21824

    Article  CAS  PubMed  Google Scholar 

  110. Topkara A, Özkan A, Özcan RH, Öksüz M, Akbulut M (2016) Effect of concentrated growth factor on survival of diced cartilage graft. Aesthet Surg J 36(10):1176–1187

    Article  PubMed  Google Scholar 

  111. Wang F, Sun Y, He D, Wang L (2017) Effect of concentrated growth factors on the repair of the goat temporomandibular joint. J Oral Maxillofac Surg 75(3):498–507

    Article  PubMed  Google Scholar 

  112. Birdwhistell KE, Karumbaiah L, Franklin SP (2018) Sustained release of transforming growth factor-β1 from platelet-rich chondroitin sulfate glycosaminoglycan gels. J Knee Surg 31(5):410–415

    Article  PubMed  Google Scholar 

  113. Abd El Raouf M, Wang X, Miusi S, Chai J, Mohamed AbdEl-Aal AB, Nefissa Helmy MM et al (2019) Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets 30(2):213–221

    Article  CAS  PubMed  Google Scholar 

  114. Fang D, Jin P, Huang Q, Yang Y, Zhao J, Zheng L (2019) Platelet-rich plasma promotes the regeneration of cartilage engineered by mesenchymal stem cells and collagen hydrogel via the TGF-β/SMAD signaling pathway. J Cell Physiol. https://doi.org/10.1002/jcp.28211

    Article  PubMed  PubMed Central  Google Scholar 

  115. Göral A, Aslan C, Bolat Küçükzeybek B, Işık D, Hoşnuter M, Durgun M (2016) Platelet-rich fibrin improves the viability of diced cartilage grafts in a rabbit model. Aesthet Surg J 36(4):NP153–NP162

    Article  PubMed  Google Scholar 

  116. Lai Y, Li Y, Cao H, Long J, Wang X, Li L et al (2019) Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials 197:207–219

    Article  CAS  PubMed  Google Scholar 

  117. Sarkar MR, Augat Shefelbine SJ, Schorlemmer S, Huber-Lang M, Claes L et al (2006) Bone formation in a long bone defect model using a platelet-rich plasma-loaded collagen scaffold. Biomaterials 27(9):1817–1823

    Article  CAS  PubMed  Google Scholar 

  118. Wang L, Zhu LX, Wang Z, Lou AJ, Yang YX, Guo Y et al (2018) Development of a centrally vascularized tissue engineering bone graft with the unique core–shell composite structure for large femoral bone defect treatment. Biomaterials 175:44–60

    Article  CAS  PubMed  Google Scholar 

  119. Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE (2012) Administration of growth factors for bone regeneration. Regen Med 7(3):369–385

    Article  CAS  PubMed  Google Scholar 

  120. Sohn DS, Heo JU, Kwak DH, Kim DE, Kim JM, Moon JW et al (2011) Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone. Implant Dent 20(5):389–395

    PubMed  Google Scholar 

  121. Takeda Y, Katsutoshi K, Matsuzaka K, Inoue T (2015) The effect of concentrated growth factor on rat bone marrow cells in vitro and on calvarial bone healing in vivo. Int J Oral Maxillofac Implants 30(5):1187–1196

    Article  PubMed  Google Scholar 

  122. Park HC, Kim SG, Oh JS, You JS, Kim JS, Lim SC et al (2016) Early bone formation at a femur defect using CGF and PRF grafts in adult dogs. Implant Dentistry 25(3):387–393

    Article  PubMed  Google Scholar 

  123. Wang F, Li Q, Wang Z (2017) A comparative study of the effect of Bio-Oss in combination with concentrated Growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting. J Oral Pathol Med 46(7):528–536

    Article  CAS  PubMed  Google Scholar 

  124. Durmuşlar MC, Balli U, Dede FÖ, Misir AF, Bariş E, Kürkçü M et al (2016) Histological evaluation of the effect of concentrated growth factor on bone healing. J Craniofac Surg 27(6):1494–1497

    Article  PubMed  Google Scholar 

  125. Xu Y, Qiu J, Sun Q, Yan S, Wang W, Yang P et al (2019) One-year results evaluating the effects of concentrated growth factors on the healing of intrabony defects treated with or without bone substitute in chronic periodontitis. Med Sci Monit 25:4384–4389

    Article  PubMed  PubMed Central  Google Scholar 

  126. Borsani E, Bonazza V, Buffoli B, Nocini PF, Albanese M, Zotti F et al (2018) Beneficial effects of concentrated growth factors and resveratrol on human osteoblasts in vitro treated with bisphosphonates. Biomed Res Int 2018:4597321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Zhao QM, Gao J, Huang XX, Chen XP, Wang X (2019) Concentrated growth factors extracted from blood plasma used to repair nasal septal mucosal defect after rhinoplasty. Aesthetic Plast Surg. https://doi.org/10.1007/s00266-019-01474-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Yingying Wan for providing medical writing and editorial assistance.

Funding

Corresponding author has received grants from the Natural Science Foundation of Beijing (7132176); Capital Clinical Specialty Application Research Program (Z161100000516098); CAMS Innovation Fund for Medical Science (2016-12M-2-006, 2017-12M-1-007, 2016-12M-2-001); Key Laboratory of Study on the Pathogenesis of Craniofacial Congenital Malformation, Chinese Academy of Medical Sciences (2018PT31051); and PUMC Young Foundation (3332016133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyue Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Human and Animal Rights

The article is not involved in any studies with animals or human participants conducted by the authors.

Informed Consent

Informed consent was not required for the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Jiang, H. A Comprehensive Review of Concentrated Growth Factors and Their Novel Applications in Facial Reconstructive and Regenerative Medicine. Aesth Plast Surg 44, 1047–1057 (2020). https://doi.org/10.1007/s00266-020-01620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-020-01620-6

Keywords

Navigation