Skip to main content

Advertisement

Log in

Single Treatment of Grades II and III Cellulite Using a Minimally Invasive 1,440-nm Pulsed Nd:YAG Laser and Side-Firing Fiber: An Institutional Review Board-Approved Study with a 24-Month Follow-Up Period

  • Original Article
  • Aesthetic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Cellulite represents one of the common topographic alterations to the skin surface and one of the structural changes to the subdermal fat and septal band of the posterolateral thighs. Currently, no treatment exists to address this entity with a multifactorial genesis that produces long-term beneficial outcomes. This clinical study evaluated the safety and efficacy of the 1,440-nm laser and the duration of the clinical benefits during 2 years.

Methods

Initially, 25 healthy women with thigh cellulite were enrolled in this prospective institutional review board (IRB)-approved study. For grade II cellulite, the laser fiber delivered up to 1,000 J of energy to the undersurface of the entire involved skin. For grade III cellulite, the laser fiber distributed 1,300 to 1,500 J of energy to melt the subdermal fat, subcise the taut septal bands, and heat the reticular dermis. Baseline and posttreatment analyses included standardized high-resolution photography, skin elasticity measurements, ultrasound scanning for dermal thickness, histology, investigator global assessment scores, and recording of adverse events.

Results

Of the 24 subjects who underwent treatment, only 20 were available for the 6-month follow-up assessment. Objective measurements at 2 years demonstrated an increase over the baseline mean skin elasticity (34 %) and mean dermal thickness (11 %), as well as an increase in the average percentage of dermal thickening determined by ultrasound imaging. Independent investigator global assessments were rated higher for grade II subjects than for grade III subjects throughout the 2-year follow-up period. Mild adverse events disappeared by the third month.

Conclusions

This IRB-conducted clinical trial, as part of a multicenter study for Food and Drug Administration approval, demonstrated the safety and efficacy of a single minimally invasive treatment for grades II and III thigh cellulite during a 2-year follow-up period.

Level of Evidence II

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Scherwitz C, Braun-Falco O (1978) So-called cellulite. J Dermatol Surg Oncol 4(2):23–30

    Google Scholar 

  2. Draelos ZD (1997) Cellulite etiology and purported treatment. Dermatol Surg 23:1177–1181

    PubMed  CAS  Google Scholar 

  3. Nurnberger F, Muller G (1978) So-called cellulite: an invented disease. J Dermatol Surg Oncol 4:222–229

    Google Scholar 

  4. Rosenbaum M, Prieto V, Hellmer J et al (1998) An exploratory investigation of the morphology and biochemistry of cellulite. Plast Reconstr Surg 101:1934–1939

    Article  PubMed  CAS  Google Scholar 

  5. Pierard GE, Nizet JL, Pierard-Franchimont C (2000) Cellulite: from standing fat herniation to hypodermal stretch marks. Am J Dermatopathol 22:34–37

    Article  PubMed  CAS  Google Scholar 

  6. Mirrashed F, Sharp JC, Krause V et al (2004) Pilot study of dermal and subcutaneous fat structures by MRI in individuals who differ in gender, BMI, and cellulite grading. Skin Res Technol 10:161–168

    Article  PubMed  CAS  Google Scholar 

  7. Avram MM (2004) Cellulite: a review of its physiology and treatment. J Cosmet Laser Ther 6:181–185

    Article  PubMed  Google Scholar 

  8. Pierard GE (2005) Commentary on cellulite: skin mechanobiology and the waist-to-hip ratio. J Cosmet Dermatol 4:151–152

    Article  PubMed  Google Scholar 

  9. Curri SB, Bombardelli E (1994) Local lipodystrophy and districtual microcirculation. Cosmet Toilet 109:52–65

    Google Scholar 

  10. Quatresooz P, Xhauflaire-Uhoda E, Pierard-Franchimont C et al (2006) Cellulite histopathology and related mechanobiology. Int J Cosmet Sci 28:207–210

    Article  PubMed  CAS  Google Scholar 

  11. Dahl PR, Salla MJ, Winkelmann RK (1996) Localized involution allipoatrophy: a clinicopathologic study of 16 patients. J Am Acad Dermatol 35(4):523–528

    Article  PubMed  CAS  Google Scholar 

  12. Murphy GF (1997) Histopathology of the skin. In: Elder DE, Elenitsas R, Jaworsky C, Johnson BL Jr (eds) Lever’s histopathology of the skin. Lippincott-Raven, Philadelphia, pp 5–50

    Google Scholar 

  13. Franchi J, Pellicur F et al (2003) The adipocyte in the history of slimming agents. Pathol Biol 51:244–247

    Article  PubMed  CAS  Google Scholar 

  14. Bacci PA (2010) Anatomy of cellulite and the interstitial matrix. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 8–12

    Chapter  Google Scholar 

  15. Smalls LK, Lee CY, Whitestone J et al (2005) Quantitative model of cellulite: three-dimensional skin surface topography, biophysical characterization, and relationship to human perception. J Cosmet Sci 56:105–120

    PubMed  Google Scholar 

  16. Perin F, Perrier C, Pittet JC et al (2001) Assessment of skin improvement treatment efficacy using the photograding of mechanically accentuated macrorelief of thigh skin. Int J Cosmet Sci 22:147–156

    Article  Google Scholar 

  17. Bielfeldt S, Buttgereit P, Brandt M et al (2008) Noninvasive evaluation techniques to quantify the efficacy of cosmetic anticellulite products. Skin Res Technol 14(3):336–344

    Article  PubMed  Google Scholar 

  18. Ortonne JP, Zartarian Z, Verschoore M et al (2008) Cellulite and skin ageing: is there any interaction? J Eur Acad Dermatol Venereol 22:827–834

    Article  PubMed  CAS  Google Scholar 

  19. Querleux B, Cornillow C, Jolivet O et al (2002) Anatomy and physiology of subcutaneous adipose tissue by in vivo magnetic resonance imaging and spectroscopy: relationships with sex and presence of cellulite. Skin Res Technol 8:112–124

    Article  Google Scholar 

  20. Gensanne D, Josse G, Theunis J et al (2009) Quantitative magnetic resonance imaging of subcutaneous adipose tissue. Skin Res Technol 13:45–50

    Article  Google Scholar 

  21. Dobke MK, DiBernardo B, Thompson C et al (2002) Assessment of biomechanical properties: is cellulitic skin different? Aesthet Surg J 22:260–266

    Article  PubMed  Google Scholar 

  22. Lucassen GW, van der Sluys WLN, van Herk JJ et al (1997) The effectiveness of massage treatment on cellulite as monitored by ultrasound imaging. Skin Res Technol 3:154–160

    Article  Google Scholar 

  23. Rossi ABR, Vergnanini AI (2000) Cellulite: a review. J Eur Acad Dermatol Venereol 14:251–262

    Article  PubMed  CAS  Google Scholar 

  24. Hu W, Siegfried EC, Siegel DM (2002) Product-related emphasis of skin disease information online. Arch Dermatol 138:775–780

    Article  PubMed  Google Scholar 

  25. Hexsel D, Zechneister do Prado D, Goldman MP (2010) Topical management of cellulite. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 62–68

    Chapter  Google Scholar 

  26. Sasaki GH, Oberg K, Tucker B et al (2007) The effectiveness and safety of topical PhotoActif phosphatidylcholine-based anti-cellulite gel and LED (red and near-infrared) light on grade II-III thigh cellulite: a randomized, double-blinded study. J Cosmet Laser Ther 9:87–96

    Article  PubMed  Google Scholar 

  27. Kinney BM (1999) Cellulite treatment: a myth or reality: a prospective randomized, controlled trial of two therapies, endermologie and aminophylline cream. Plast Reconstr Surg 104:1115–1117

    Article  Google Scholar 

  28. Hamilton EC, Greenway FL, Bray GA (1999) Regional fat loss from the thigh in women using 2 % aminophylline cream. Plast Reconstr Surg 104(1 Suppl 2):95S

    Google Scholar 

  29. Artz JS, Dinner MI (1995) Treatment of cellulite deformities of the thighs with topical aminophylline gel. Can J Plast Surg 3:190–192

    Google Scholar 

  30. Collis N, Elliot LA, Sharpe C et al (1999) Cellulite treatment: a myth or reality: a prospective randomized, controlled trial of two therapies, endermologie and aminophylline cream. Plast Reconstr Surg 104:1110–1114

    PubMed  CAS  Google Scholar 

  31. Kligman AM, Pagnoni A, Stoudemayer T (1999) Topical retinol improves cellulite. J Dermatol Treat 10:119–125

    Article  CAS  Google Scholar 

  32. Pierard-Franchimont C, Pierard GE, Henry F et al (2000) A randomized, placebo-controlled trial of topical retinal in the treatment of cellulite. Am J Clin Dermatol 1:369–374

    Article  PubMed  CAS  Google Scholar 

  33. Braun M (2010) Injection lipolysis for body sculpting and cellulite reduction. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London

    Google Scholar 

  34. Palmer M, Curran J, Bowler P (2006) Clinical experience and safety using phosphatidylcholine injections for the localized reduction of subcutaneous fat: a multicentre, retrospective UK study. J Cosmet Dermatol 5:218–226

    Article  PubMed  Google Scholar 

  35. Rotunda AM, Suzuki H, Moy RI et al (2004) Detergent effects of sodium deoxycholate are a major feature of an injectable phosphatidylcholine formulation used for localized fat dissolution. Dermatol Surg 30:1001–1007

    Article  PubMed  Google Scholar 

  36. Bacci PA (2010) Endermologie-LPD systems after 15 years. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 91–98

    Chapter  Google Scholar 

  37. Sadick NS (2010) VelaSmooth and VelaShape. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 108–114

    Chapter  Google Scholar 

  38. Sadick NS, Mulholland RS (2004) A prospective clinical study to evaluate the efficacy and safety of cellulite treatment using the combination of optical and RF energies for subcutaneous tissue heating. J Cosmet Laser Ther 6:187–190

    Article  PubMed  Google Scholar 

  39. Alster TS, Tanzi EL (2005) Cellulite treatment using a novel combination radiofrequency, infrared light, and mechanical tissue manipulation device. J Cosmet Laser Ther 7:81–85

    Article  PubMed  Google Scholar 

  40. Sadick N, Magro C (2007) A study evaluating the safety and efficacy of the VelaSmooth system in the treatment of cellulite. J Cosmet Laser Ther 9:15–20

    Article  PubMed  Google Scholar 

  41. Kulick M (2006) Evaluation of the combination of radiofrequency, infrared energy, and mechanical rollers with suction to improve skin surface irregularities (cellulite) in a limited treatment area. J Cosmet Laser Ther 8:185–190

    Article  PubMed  Google Scholar 

  42. Goldman MP (2010) The use of the Tri-active™ in the treatment of cellulite. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 99–107

    Chapter  Google Scholar 

  43. Pabby A, Goldman MP (2006) The use of TriActive in the treatment of cellulite. In: Goldman MP, Bacci PA, Leischoff G, Hexsel D, Angelini F (eds) Cellulite: pathophysiology and treatment. Taylor & Francis, New York, pp 189–195

    Google Scholar 

  44. Wanner M, Avarm M (2008) An evidence-based assessment of treatments for cellulite. J Drugs Dermatol 7:341–345

    PubMed  Google Scholar 

  45. Kulick MI (2010) Evaluation of a noninvasive, dual-wavelength laser-suction and massage device for the regional treatment of cellulite. Plast Reconstr Surg 125:1788–1796

    Article  PubMed  CAS  Google Scholar 

  46. Unaeze J (2010) Goldberg: Accent® unipolar radiofrequency. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, p 11

    Google Scholar 

  47. Manuskiatti W (2010) Tripollar™ radiofrequency. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 158–167

    Chapter  Google Scholar 

  48. Emilia del Pino M, Rosado RH, Azuela A et al (2006) Effect of controlled volumetric tissue heating with radiofrequency on cellulite and the subcutaneous tissue of the buttocks and thighs. J Drugs Dermatol 5:714–722

    PubMed  Google Scholar 

  49. Teitelbaum SA, Burns JL, Kobota J et al (2007) Noninvasive body contouring by focused ultrasound: safety and efficacy of contour I device in a multicenter, controlled, clinical study. Plast Reconstr Surg 120:779–789

    Article  PubMed  CAS  Google Scholar 

  50. Hexsel D, Mazzuco R, Soriefmann M (2010) Subcision. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 174–179

    Chapter  Google Scholar 

  51. Orentreich DS, Orentreich N (1995) Subcutaneous incisionless (subcision) surgery for the correction of depressed scars and wrinkles. Dermatol Surg 21:543–549

    PubMed  CAS  Google Scholar 

  52. Gasparotti M (1992) Superficial liposuction: a new application of the technique for aged and flaccid skin. Aesthet Plast Surg 16:141–153

    Article  CAS  Google Scholar 

  53. Coleman WP, Hanke CW, Alt TH et al (1991) Liposuction cosmetic surgery of the skin: principles and practice. BC Decker Inc, Philadelphia, pp 231–238

    Google Scholar 

  54. Pribanich S, Simpson FG, Jeld B et al (1994) Low-dose tretinoin does not improve striaedistensae: a double-blind, placebo-controlled study. Cutis 54:121–124

    PubMed  CAS  Google Scholar 

  55. Paul M, Mulholland RS (2009) A new approach for adipose tissue treatment and body contouring using radiofrequency-assisted liposuction. Aesthet Plast Surg 33:687–694

    Article  Google Scholar 

  56. Blugerman G, Schavelzon D, Paul MD (2010) A safety and feasibility study of a novel radiofrequency-assisted liposuction technique. Plast Reconstr Surg 125:998–1006

    Article  PubMed  CAS  Google Scholar 

  57. Hurwitz D, Smith D (2012) Treatment of overweight patients by radiofrequency-assisted liposuction (RFAL) for aesthetic reshaping and skin tightening. Aesthet Plast Surg 36:62–71

    Article  Google Scholar 

  58. Theodorou SJ, Paresi RK, Chia CT (2012) Radiofrequency-assisted liposuction device for body contouring: 97 patients under local anesthesia. Aesthet Plast Surg 36:767–779

    Article  Google Scholar 

  59. Goldman A, Schavelon DE, Blugerman GS (2002) Laser lipolysis: liposuction using Nd:YAG laser. Rev Soc Pa Bras Cir Plast 17:17–26

    Google Scholar 

  60. Badin AZ, Moraes LM, Gondek L et al (2002) Laser lipolysis: flaccidity under control. Aesthet Plast Surg 26:335–339

    Article  Google Scholar 

  61. Goldman A, Schavelon DE, Blugerman G (2003) Liposuction using neodimium:yttrium-aluminum-garnet laser (abstract). Plast Reconstr Surg 111:2497

    Article  Google Scholar 

  62. Goldman A (2006) Submental Nd:YAG laser-assisted liposuction. Laser Surg Med 38:181–184

    Article  Google Scholar 

  63. Prado A, Andrades P, Danilla S et al (2006) A prospective, randomized, double-blind, controlled clinical trial comparing laser-assisted lipoplasty with suction-assisted lipoplasty. Plast Reconstr Surg 118:1032–1045

    Article  PubMed  CAS  Google Scholar 

  64. Kim K, Geronemus RG (2006) Laser lipolysis using a novel 1,064-nm Nd:YAG laser. Dermatol Surg 32:241–248

    Article  PubMed  CAS  Google Scholar 

  65. Goldman A, Gotkin RH, Sarnoff D et al (2008) Cellulite: a new treatment approach combining subdermal Nd:YAG laser lipolysis and autologous fat transplantation. Aesthet Surg J 28:656–662

    Article  PubMed  Google Scholar 

  66. DiBernardo BE, Reyes J, Chen B (2009) Evaluation of tissue thermal effects from 1,064/1,320-nm laser-assisted lipolysis and its clinical implications. J Cosmet Laser Ther 11:62–69

    Article  PubMed  Google Scholar 

  67. Sasaki GH, Tevez A (2009) Laser-assisted liposuction for facial and body contouring and tissue tightening: A 2-year experience with 75 consecutive patients. Semin Cutan Med Surg 28:226–235

    Article  PubMed  CAS  Google Scholar 

  68. Sasaki GH (2010) Quantification of human abdominal skin tightening and contraction after component treatments with 1,064-nm/1,320-nm laser-assisted lipolysis: clinical implications. Aesthet Surg J 30:239–248

    Article  PubMed  Google Scholar 

  69. DiBernardo BE (2011) Treatment of cellulite using a 1,440-nm pulsed laser with one-year follow-up. Aesthet Surg J 31:328–341

    Article  PubMed  Google Scholar 

  70. Sasaki GH, Tevez A, Ha C et al (2012) Treatment of grade II-III cellulite using a minimally invasive 1,440-nm pulsed Nd:YAG laser with eighteen-month follow-up. White paper. Cynosure, Inc., Westford

    Google Scholar 

  71. DiBernardo BE (2010) Randomized blinded split-abdomen study evaluation skin shrinkage and skin tightening in laser-assisted liposuction vs liposuction control. Aesthet Surg J 30:593–602

    Article  PubMed  Google Scholar 

  72. Grove GL, Damia J, Grove MJ et al (2006) Suction chamber method for measurement of skin mechanics: the DermaLab. In: Serup J, Jemec GBE, Grove GL (eds) Handbook of noninvasive methods and the skin, 2nd edn. CRC Press, Boca Raton, pp 593–599

    Chapter  Google Scholar 

  73. Pedersen L, Hansen B, Jemec GBE (2003) Mechanical properties of the skin: a comparison between two suction cup methods. Skin Res Technol 9:111–115

    Article  PubMed  CAS  Google Scholar 

  74. Sasaki GH (2010) Histological changes after 1,440-nm, 1,320-nm, and 1,064-nm wavelength exposures in the deep and superficial layers of human abdominal tissue: acute and delayed findings. Cynosure White Paper, Westford

    Google Scholar 

  75. Goldman A, Gotkin RH, Sarnoff DS et al (2008) Cellulite: a new treatment approach combining subdermal Nd:YAG laser lipolysis and autologous fat transplantation. Aesthet Surg J 28:656–662

    Article  PubMed  Google Scholar 

  76. Bousquet-Rouaud R, Bazan M, Chaintreuil J et al (2010) High-frequency ultrasound evaluation of cellulite treated with the 1,064-nm Nd:YAG laser. In: Goldman MP, Hexsel D (eds) Cellulite: pathophysiology and treatment, 2nd edn. Informa Healthcare, London, pp 136–144

    Chapter  Google Scholar 

  77. Pratt WK (2001) Digital image processing: PIKS inside, 3rd edn. Wiley, New York, pp 433–436

    Book  Google Scholar 

  78. Lach E (2008) Reduction of subcutaneous fat and improvement in cellulite by dual-wavelength, low-level lease energy combined with vacuum and massage. J Cosmet Laser Ther 10:d202–d209

    Article  Google Scholar 

Download references

Disclosure

The author is a consultant for Cynosure, the manufacturer of the device discussed in this study, and declared no conflicts of interest with respect to the authorship and publication of this article. The author received an unrestricted study grant from Cynosure to support this clinical research as part of an IRB-approved and sponsored clinical study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon H. Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, G.H. Single Treatment of Grades II and III Cellulite Using a Minimally Invasive 1,440-nm Pulsed Nd:YAG Laser and Side-Firing Fiber: An Institutional Review Board-Approved Study with a 24-Month Follow-Up Period. Aesth Plast Surg 37, 1073–1089 (2013). https://doi.org/10.1007/s00266-013-0219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-013-0219-9

Keywords

Navigation