Skip to main content

Advertisement

Log in

The Fetal Porcine Aorta and Mesenteric Acellular Matrix as Small-caliber Tissue Engineering Vessels and Microvasculature Scaffold

  • Multimedia Manuscript
  • Experimental/Special Topics
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

The extracellular matrix (ECM) is characterized by not only well-preserved scaffolds of organs and vascularized tissues, but also by extremely low immunogenicity during allo- or xeno-implantation. This study aimed to establish a model of a composite microvasculature network scaffold with a small-caliber-dominant vascular pedicle by decellularizing fetal porcine aorta and the conterminous mesentery.

Methods

The aorta and the conterminous mesenteric vascular system originating from the inferior mesenteric artery were harvested from fetal pigs at late gestation. All of the cellular components were removed by sequential treatment with Triton X-100 and sodium dodecyl sulfate. After the degree of decellularization was assessed, the fetal porcine aorta and mesenteric acellular matrix (FPAMAM) were transplanted into dogs.

Results

Gross and histologic examination demonstrated the removal of cellular constituents with preservation of ECM architecture, including macrochannels and microchannels. The residual DNA content in the FPAMAM was less than 2 %. The aorta and microchannels were perfused well, and the fetal porcine aorta had good patency for more than 3 months.

Conclusions

The integrity of the FPAMAM provided a scaffold for the reconstruction of a rich vascular network with numerous segmentally radiating branches. Decellularized fetal porcine vascular tissue might be a potential alternative for xenogeneic transplantation based on its optimized properties and low immunogenicity.

Level of Evidence II

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vincenzo V, Cortivo R, Lacobellis L et al (2009) Hyaluronan benzyl ester as a scaffold for tissue engineering. Int J Mol Sci 10:2972–2985

    Article  Google Scholar 

  2. Baguneid MS, Seifalian AM, Salacinski HJ et al (2006) Tissue engineering of blood vessels. Br J Surg 93:282–290

    Article  PubMed  CAS  Google Scholar 

  3. Chang EI, Bonillas RG, El-ftesi S et al (2009) Tissue engineering using autologous microcirculatory beds as vascularized bioscaffolds. FASEB J 23:906–915

    Article  PubMed  CAS  Google Scholar 

  4. Tu JV, Pashos CL, Naylor CD et al (1997) Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N Engl J Med 337:139

    Google Scholar 

  5. Stegemann JP, Kaszuba SN, Rowe SL (2007) Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13:2601–2613

    Article  PubMed  CAS  Google Scholar 

  6. Kulig KM, Vacanti JP (2004) Hepatic tissue engineering. Transpl Immunol 12:303–310

    Article  PubMed  CAS  Google Scholar 

  7. Nahmias Y, Schwartz RE, Hu WS et al (2006) Endothelium mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. Tissue Eng 12:1627–1638

    Article  PubMed  CAS  Google Scholar 

  8. Griffith LG, Naughton G (2002) Tissue engineering - current challenges and expanding opportunities. Science 295:1009–1014

    Article  PubMed  CAS  Google Scholar 

  9. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138:745–753

    Article  PubMed  CAS  Google Scholar 

  10. Baptista PM, Siddiqui MM, Lozier G et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617

    Article  PubMed  CAS  Google Scholar 

  11. Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820

    Article  PubMed  CAS  Google Scholar 

  12. Schaner PJ, Martin ND, Tulenko TN et al (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40:146–153

    Article  PubMed  Google Scholar 

  13. Gilbert TW, Freund JM, Badylak SF (2009) Quantification of DNA in biologic scaffold materials. J Surg Res 152:135–139

    Article  PubMed  CAS  Google Scholar 

  14. Giessler GA, Friedrich PF, Shin RH et al (2007) The superficial inferior epigastric artery fascia flap in the rabbit. Microsurgery 27:560–564

    Article  PubMed  Google Scholar 

  15. Allaire E, Bruneval P, Mandet C et al (1997) The immunogenicity of the extracellular matrix in arterial xenografts. Surgery 122:73–81

    Article  PubMed  CAS  Google Scholar 

  16. Eventov-Friedman S, Katchman H, Shezen E et al (2005) Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci USA 102:2928–2933

    Article  PubMed  CAS  Google Scholar 

  17. Dekel B, Burakova T, Arditti FD et al (2003) Human and porcine early kidney precursors as a new source for transplantation. Nat Med 9:53–60

    Article  PubMed  CAS  Google Scholar 

  18. Teebken OE, Bader A, Steinhoff G et al (2000) Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 19:381–386

    Article  PubMed  CAS  Google Scholar 

  19. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12:367–377

    Article  PubMed  CAS  Google Scholar 

  20. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593

    Article  PubMed  CAS  Google Scholar 

  21. Dahl SL, Koh J, Prabhakar V et al (2003) Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 12:659–666

    PubMed  Google Scholar 

  22. Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  PubMed  CAS  Google Scholar 

  23. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    PubMed  CAS  Google Scholar 

  24. Samouillan V, Dandurand-Lods J, Lamure A et al (1999) Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res 46:531–538

    Article  PubMed  CAS  Google Scholar 

  25. Cho SW, Park HJ, Ryu JH et al (2005) Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials 26:1915–1924

    Article  PubMed  CAS  Google Scholar 

  26. Amiel GE, Komura M, Shapira O et al (2006) Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng 12:2355–2365

    Article  PubMed  CAS  Google Scholar 

  27. Hoganson DM, Owens GE, O’Doherty EM et al (2010) Preserved extracellular matrix components and retained biological activity in decellularized porcine mesothelium. Biomaterials 31:6934–6940

    Article  PubMed  CAS  Google Scholar 

  28. Yayon A, Klagsbrun M, Esko JD et al (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848

    Article  PubMed  CAS  Google Scholar 

  29. Pike DB, Cai S, Pomraning KR et al (2006) Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27:5242–5251

    Article  PubMed  CAS  Google Scholar 

  30. Elia R, Fuegy PW, VanDelden A et al (2010) Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factorloaded, glycosaminoglycan hydrogels. Biomaterials 31:4630–4638

    Article  PubMed  CAS  Google Scholar 

  31. Ballyk PD, Walsh C, Butany J et al (1998) Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 31:229–237

    Article  PubMed  CAS  Google Scholar 

  32. Glotzbach JP, Levi B, Wong VW et al (2010) The basic science of vascular biology: implications for the practicing surgeon. Plast Reconstr Surg 126:1528–1538

    Article  PubMed  CAS  Google Scholar 

  33. Kelly BD, Hackett SF, Hirota K et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081

    Article  PubMed  CAS  Google Scholar 

  34. Van Royen N, Piek JJ, Buschmann I et al (2001) Stimulation of arteriogenesis: a new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49:543–553

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 81171825).

Disclosures

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binyou Zheng or Daping Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 11,528 kb)

Supplementary material 2 (MP4 4,516 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Huang, C., Xu, Z. et al. The Fetal Porcine Aorta and Mesenteric Acellular Matrix as Small-caliber Tissue Engineering Vessels and Microvasculature Scaffold. Aesth Plast Surg 37, 822–832 (2013). https://doi.org/10.1007/s00266-013-0173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-013-0173-6

Keywords

Navigation