Skip to main content

Advertisement

Log in

Aesthetic Refinement of Secondary Cranioplasty Using Methyl Methacrylate Bone Cements

  • Original Article
  • General Reconstruction
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Cranioplasty using alternate alloplastic bone substitutes instead of autologous bone grafting is inevitable in the clinical field. The authors present their experiences with cranial reshaping using methyl methacrylate (MMA) and describe technical tips that are keys to a successful procedure.

Methods

A retrospective chart review of patients who underwent cranioplasty with MMA between April 2007 and July 2010 was performed. For 20 patients, MMA was used for cranioplasty after craniofacial trauma (n = 16), tumor resection (n = 2), and a vascular procedure (n = 2). The patients were divided into two groups. In group 1, MMA was used in full-thickness inlay fashion (n = 3), and in group 2, MMA was applied in partial-thickness onlay fashion (n = 17). The locations of reconstruction included the frontotemporal region (n = 5), the frontoparietotemporal region (n = 5), the frontal region (n = 9), and the vertex region (n = 1). The size of cranioplasty varied from 30 to 144 cm2.

Results

The amount of MMA used ranged from 20 to 70 g. This biomaterial was applied without difficulty, and no intraoperative complications were linked to the applied material. The patients were followed for 6 months to 4 years (mean, 2 years) after MMA implantation. None of the patients showed any evidence of implant infection, exposure, or extrusion. Moreover, the construct appeared to be structurally stable over time in all the patients.

Conclusions

Methyl methacrylate is a useful adjunct for treating deficiencies of the cranial skeleton. It provides rapid and reliable correction of bony defects and contour deformities. Although MMA is alloplastic, appropriate surgical procedures can avoid problems such as infection and extrusion. An acceptable overlying soft tissue envelope should be maintained together with minimal contamination of the operative site.

Level of Evidence V

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Miyake H, Ohta T, Tanaka H (2000) A new technique for cranioplasty with L-shaped titanium plates and combination ceramic implants composed of hydroxyapatite and tricalcium phosphate (Ceratite). Neurosurgery 46:414–418

    Article  PubMed  CAS  Google Scholar 

  2. Gasparini G, Boniello R, Moro A, Tamburrini G, Di Rocco C, Pelo S (2009) Cranial reshaping using methyl methacrylate: technical note. J Craniofac Surg 20:184–190

    Article  PubMed  Google Scholar 

  3. Marchac D, Greensmith A (2008) Long-term experience with methyl methacrylate cranioplasty in craniofacial surgery. J Plast Reconstr Aesthet Surg 61:744–752 discussion 753

    Article  PubMed  CAS  Google Scholar 

  4. Li CH, Yang SH, Wang HS, Tu YK, Kuo MF (2010) Use of the “mortise and tenon” principle in the augmentation of autologous cranioplasty using bone cement in a child. Childs Nerv Syst 26:1807–1811

    Article  PubMed  Google Scholar 

  5. Sahoo N, Roy ID, Desai AP, Gupta V (2010) Comparative evaluation of autogenous calvarial bone graft and alloplastic materials for secondary reconstruction of cranial defects. J Craniofac Surg 21:79–82

    Article  PubMed  Google Scholar 

  6. Badie B (1996) Cosmetic reconstruction of temporal defect following pterional [corrected] craniotomy. Surg Neurol 45:383–384

    Article  PubMed  CAS  Google Scholar 

  7. Afifi A, Djohan RS, Hammert W, Papay FA, Barnett AE, Zins JE (2010) Lessons learned reconstructing complex scalp defects using free flaps and a cranioplasty in one stage. J Craniofac Surg 21:1205–1209

    Article  PubMed  Google Scholar 

  8. Ducic Y (2002) Titanium mesh and hydroxyapatite cement cranioplasty: a report of 20 cases. J Oral Maxillofac Surg 60:272–276

    Article  PubMed  Google Scholar 

  9. Hammon WM, Kempe LG (1971) Methyl methacrylate cranioplasty: 13 years experience with 417 patients. Acta Neurochir Wien 25:69–77

    Article  PubMed  CAS  Google Scholar 

  10. Belmahi A, Gharib NE, Bencheikh R, Abbassi A, Mizahi M (2002) Reconstruction of large scalp and calvarium defects by using the semi-free latissimus dorsi flap associated with methyl methacrylate implant for cranioplasty. Ann Chir Plast Esthet 47:298–303

    Article  PubMed  CAS  Google Scholar 

  11. Yanai A (1991) Resin sealant: a new method of methyl methacrylate cranioplasty (technical note). J Neurosurg 75:328–330

    Article  PubMed  CAS  Google Scholar 

  12. Elshahat A, Shermak MA, Inoue N, Chao EY, Manson P (2004) The use of Novabone and Norian in cranioplasty: a comparative study. J Craniofac Surg 15:483–489

    Article  PubMed  Google Scholar 

  13. Jackson IJ, Hoffmann GT (1956) Depressed comminuted fracture of a plastic cranioplasty. J Neurosurg 13:116–117

    Article  PubMed  CAS  Google Scholar 

  14. Matic DB, Manson PN (2004) Biomechanical analysis of hydroxyapatite cement cranioplasty. J Craniofac Surg 15:415–422 discussion 422–423

    Article  PubMed  Google Scholar 

  15. Benzel EC, Thammavaram K, Kesterson L (1990) The diagnosis of infections associated with acrylic cranioplasties. Neuroradiology 32:151–153

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro SA (1991) Cranioplasty, vertebral body replacement, and spinal fusion with tobramycin-impregnated methyl methacrylate. Neurosurgery 28:789–791

    Article  PubMed  CAS  Google Scholar 

  17. Manson PN, Crawley WA, Hoopes JE (1986) Frontal cranioplasty: risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg 77:888–904

    Article  PubMed  CAS  Google Scholar 

  18. Matsuno A, Tanaka H, Iwamuro H, Takanashi S, Miyawaki S, Nakashima M, Nakaguchi H, Nagashima T (2006) Analyses of the factors influencing bone graft infection after delayed cranioplasty. Acta Neurochir Wien 148:535–540 discussion 540

    Article  PubMed  CAS  Google Scholar 

  19. Cheng YK, Weng HH, Yang JT, Lee MH, Wang TC, Chang CN (2008) Factors affecting graft infection after cranioplasty. J Clin Neurosci 15:1115–1119

    Article  PubMed  Google Scholar 

  20. Magee WP Jr, Ajkay N, Freda N, Rosenblum RS (2004) Use of fast-setting hydroxyapatite cement for secondary craniofacial contouring. Plast Reconstr Surg 114:289–297

    Article  PubMed  Google Scholar 

  21. Cabraja M, Klein M, Lehmann TN (2009) Long-term results following titanium cranioplasty of large skull defects. Neurosurg Focus 26:E10

    Article  PubMed  Google Scholar 

  22. Davies JP, Harris WH (1995) Comparison of diametral shrinkage of centrifuged and uncentrifuged Simplex P bone cement. J Appl Biomater 6:209–211

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez E, Ginebra MP, Boltong MG, Driessens FC, Ginebra J, De Maeyer EA, Verbeeck RM, Planell JA (1996) Kinetic study of the setting reaction of a calcium phosphate bone cement. J Biomed Mater Res 32:367–374

    Article  PubMed  CAS  Google Scholar 

  24. Fujishiro Y, Takahashi K, Sato T (2001) Preparation and compressive strength of alpha-tricalcium phosphate/gelatin gel composite cement. J Biomed Mater Res 54:525–530

    Article  PubMed  CAS  Google Scholar 

  25. Costantino PD, Friedman CD, Lane A (1993) Synthetic biomaterials in facial plastic and reconstructive surgery. Facial Plast Surg 9:1–15

    Article  PubMed  CAS  Google Scholar 

  26. Verheggen R, Merten HA (2001) Correction of skull defects using hydroxyapatite cement (HAC)—evidence derived from animal experiments and clinical experience. Acta Neurochir Wien 143:919–926

    Article  PubMed  CAS  Google Scholar 

  27. Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg 14:144–153

    Article  PubMed  Google Scholar 

  28. Tadros M, Costantino PD (2008) Advances in cranioplasty: a simplified algorithm to guide cranial reconstruction of acquired defects. Facial Plast Surg 24:135–145

    Article  PubMed  CAS  Google Scholar 

  29. Robinson AC, O’Dwyer TP, Gullane PJ, Dolan EJ (1989) Anterior skull defect reconstruction with methyl methacrylate. J Otolaryngol 18:241–244

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors have no financial interest to declare in relation to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Young Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SE., Lim, S.Y., Pyon, JK. et al. Aesthetic Refinement of Secondary Cranioplasty Using Methyl Methacrylate Bone Cements. Aesth Plast Surg 37, 592–600 (2013). https://doi.org/10.1007/s00266-013-0110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-013-0110-8

Keywords

Navigation