Skip to main content

Advertisement

Log in

Utilizing Muscle-Derived Stem Cells to Enhance Long-Term Retention and Aesthetic Outcome of Autologous Fat Grafting: Pilot Study in Mice

  • Original Article
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Autologous fat grafting has been regarded as the ideal soft tissue filler for more than a century. Low long-term retention rate and unpredictability limit it from widespread clinical practice. Many theories for this have been proposed: lack of sufficient blood supply and subsequent necrosis is the most accepted. In this pilot study, we showed both macroscopically and microscopically the viability of muscle-derived stem cells (MDSCs) cotransplanted with fat placed intramuscularly for 3 months. MRI scanning showed a stronger fat signal in the MDSC-treated group than that of the control group. Moreover, histological evaluation exhibited well-preserved and intact fat cells in the MDSC-treated group. In contrast, the control group showed extensive fibrosis and fat graft loss. Furthermore, the MDSC-treated group possessed almost threefold greater capillary density than the control group. We conclude that cotransplantation of muscle-derived stem cells and autologous fat tissue improves the long-term survival of intramuscular fat transplants by promoting neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neuber GA (1893) Fat transplantation. Verh Dtsch Ges Chir 22:66

    Google Scholar 

  2. Czerny V (1895) Plastischer Ersatz der Brustdruse durch ein Lipom. Zentralbl Chir 27:72

    Google Scholar 

  3. Lexer E (1910) Freie Fetttransplantation. Dtsch Med Wochenschr 3:640

    Google Scholar 

  4. Ogawa R, Oki K, Hyakusoku H (2007) Vascular tissue engineering and vascularized 3D tissue regeneration. Regen Med 2:831–837

    Article  PubMed  Google Scholar 

  5. Karacaoglu E, Kizilkaya E, Cermik H, Zienowicz R (2005) The role of recipient sites in fat-graft survival: experimental study. Ann Plast Surg 55:63–68

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi M, Matsumoto F, Bujo H et al (2005) Revascularization determines volume retention and gene expression by fat grafts in mice. Exp Biol Med (Maywood) 230:742–748

    CAS  Google Scholar 

  7. Lu F, Li J, Gao JH et al (2009) Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plast Reconstr Surg 124:1437–1446

    Article  PubMed  CAS  Google Scholar 

  8. Guerrero-Santos J, Gonzalez-Mendoza A, Masmela Y, Gonzalez MA, Deos M, Diaz P (1996) Long term survival of free fat grafts in muscle: an experimental study in rats. Aesthetic Plast Surg 20:403–408

    Article  CAS  Google Scholar 

  9. Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  10. Qu-Petersen Z, Deasy B, Jankowski RJ et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–854

    Article  PubMed  CAS  Google Scholar 

  11. Li Y, Huard J (2002) Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol 161(3):895–907

    Article  PubMed  Google Scholar 

  12. Rehman J, Traktuev D, Li J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  13. Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem-stromal cells. Aesthetic Plast Surg 32:48–55

    Article  PubMed  Google Scholar 

  14. Deasy BM, Huard J (2002) Gene therapy and tissue engineering based on muscle-derived stem cells. Curr Opin Mol Ther 4:382–389

    PubMed  CAS  Google Scholar 

  15. Cao B, Zheng B, Jankowski RJ et al (2003) Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 5:640–646

    Article  PubMed  CAS  Google Scholar 

  16. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    PubMed  CAS  Google Scholar 

  17. Eto H, Suga H, Matsumoto D et al (2009) Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 124(4):1087–1097

    Article  PubMed  CAS  Google Scholar 

  18. Gonda K, Shigeura T, Sato T et al (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 121(2):401–410

    Article  PubMed  CAS  Google Scholar 

  19. Pu LL, Cui X, Fink BF et al (2006) Adipose aspirates as a source for human processed lipoaspirate cells after optimal cryopreservation. Plast Reconstr Surg 117(6):1845–1850

    Article  PubMed  CAS  Google Scholar 

  20. Oshima H, Payne TR, Urish KL, Sakai T, Ling Y, Gharaibeh B, Tobita K, Keller BB, Cummins JH, Huard J (2005) Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther 12:1130–1141

    Article  PubMed  CAS  Google Scholar 

  21. Payne TR, Payne TR, Oshima H, Sakai T, Ling Y, Gharaibeh B, Cummins J, Huard J (2005) Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 12:1264–1274

    Article  PubMed  CAS  Google Scholar 

  22. Payne TR, Oshima H, Okada M et al (2007) A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50(17):1677–1684

    Article  PubMed  CAS  Google Scholar 

  23. Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A(5):822–832

    PubMed  Google Scholar 

  24. Morishita R, Sakaki M, Yamamoto K et al (2002) Impairment of collateral formation in lipoprotein(a) transgenic mice: therapeutic angiogenesis induced by human hepatocyte growth factor gene. Circulation 105:1491–1496

    Article  PubMed  CAS  Google Scholar 

  25. Nissen LJ, Cao R, Hedlund EM et al (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117(10):2766–2777

    Article  PubMed  CAS  Google Scholar 

  26. Greenhalgh DG, Sprugel KH, Murray MJ et al (1990) PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 136(6):1235–1246

    PubMed  CAS  Google Scholar 

  27. Hamed S, Egozi D, Kruchevsky D et al (2010) Erythropoietin improves the survival of fat tissue after its transplantation in nude mice. PLoS One 5(11):e13986

    Article  PubMed  Google Scholar 

  28. Yuksel E, Weinfeld AB, Cleek R et al (2000) Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg 105(5):1712–1720

    Article  PubMed  CAS  Google Scholar 

  29. Yi C, Pan Y, Zhen Y et al (2006) Enhancement of viability of fat grafts in nude mice by endothelial progenitor cells. Dermatol Surg 32(12):1437–1443

    Article  PubMed  CAS  Google Scholar 

  30. Yi CG, Xia W, Zhang LX et al (2007) VEGF gene therapy for the survival of transplanted fat tissue in nude mice. J Plast Reconstr Aesthet Surg 60(3):272–278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research project was supported by the National Natural Science Foundation of China grant No. 30325042.

Disclosure

The authors declare that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daping Yang or Jianyu Liu.

Additional information

D. Han and Z. Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Han, D., Zhang, P. et al. Utilizing Muscle-Derived Stem Cells to Enhance Long-Term Retention and Aesthetic Outcome of Autologous Fat Grafting: Pilot Study in Mice. Aesth Plast Surg 36, 186–192 (2012). https://doi.org/10.1007/s00266-011-9751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-011-9751-7

Keywords

Navigation