Skip to main content

Effects of Pulsed Electromagnetic Fields on Postoperative Pain: A Double-Blind Randomized Pilot Study in Breast Augmentation Patients

Abstract

Background

Postoperative pain may be experienced after breast augmentation surgery despite advances in surgical techniques which minimize trauma. The use of pharmacologic analgesics and narcotics may have undesirable side effects that can add to patient morbidity. This study reports the use of a portable and disposable noninvasive pulsed electromagnetic field (PEMF) device in a double-blind, randomized, placebo-controlled pilot study. This study was undertaken to determine if PEMF could provide pain control after breast augmentation.

Methods

Forty-two healthy females undergoing breast augmentation for aesthetic reasons entered the study. They were separated into three cohorts, one group (n = 14) received bilateral PEMF treatment, the second group (n = 14) received bilateral sham devices, and in the third group (n = 14) one of the breasts had an active device and the other a sham device. A total of 80 breasts were available for final analysis. Postoperative pain data were obtained using a visual analog scale (VAS) and pain recordings were obtained twice daily through postoperative day (POD) 7. Postoperative analgesic medication use was also followed.

Results

VAS data showed that pain had decreased in the active cohort by nearly a factor of three times that for the sham cohort by POD 3 (p < 0.001), and persisted at this level to POD 7. Patient use of postoperative pain medication correspondingly also decreased nearly three times faster in the active versus the sham cohorts by POD 3 (p < 0.001).

Conclusion

Pulsed electromagnetic field therapy, adjunctive to standard of care, can provide pain control with a noninvasive modality and reduce morbidity due to pain medication after breast augmentation surgery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Tebbettts JB (2006) Achieving a predictable 24-hour return to normal activities after breast augmentation: part II. Patient preparation, refined surgical techniques, and instrumentation. Plast Reconstr Surg 18(7 Suppl):115S-127S; discussion 128S–129S, 130S–132S

    Article  Google Scholar 

  2. 2.

    Metaxotor NG, Asplund O, Hayes M (1999) The efficacy of bupivacaine with adrenaline in reducing pain and bleeding associated with breast reduction: a prospective trial. Br J Plast Surg 2(4):290–293

    Article  Google Scholar 

  3. 3.

    Rawal N, Gupta A, Helsing M, Grell K, Allvin R (2006) Pain relief following breast augmentation surgery: a comparison between incisional patient-controlled regional analgesia and traditional oral analgesia. Eur J Anaesthesiol 23:1010–1017

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Rawal N, Hylander J, Nydahl PA, Olofsson I, Gupta A (1997) Survey of postoperative analgesia following ambulatory surgery. Acta Anaesthesiol Scand 41:1017–1022

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Aaron RK, Ciombor DMcK, Simon BJ (2004) Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res 419:21–29

    Google Scholar 

  6. 6.

    Akai M, Hayashi K (2002) Effect of electrical stimulation on musculoskeletal systems: a meta-analysis of controlled clinical trials. Bioelectromagnetics 23:132–143

    PubMed  Article  Google Scholar 

  7. 7.

    Salzberg CA, Cooper SA, Perez P, Viehbeck MG, Byrne DW (1995) The effects of non-thermal pulsed electromagnetic energy on wound healing of pressure ulcers in spinal cord-injured patients: a randomized, double-blind study. Ostomy Wound Manage 41:42–51

    PubMed  CAS  Google Scholar 

  8. 8.

    Kloth LC, Berman JE, Sutton CH, Jeutter DC, Pilla AA, Epner ME (1999) Effect of pulsed radio frequency stimulation on wound healing: a double-blind pilot clinical study. In: Bersani F (ed) Electricity and magnetism in biology and medicine. Plenum, New York, pp 875–878

    Google Scholar 

  9. 9.

    Stiller MJ, Pak GH, Shupack JL, Thaler S, Kenny C, Jondreau L (1992) A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: a double-blind, placebo-controlled clinical trial. Br J Dermatol 127:147–154

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Trock DH, Bollet AJ, Markoll R (1994) The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Reports of randomized, double blind, placebo controlled trials. J Rheumatol 21:1903–1911

    PubMed  CAS  Google Scholar 

  11. 11.

    Trock DH, Bollet AJ, Dyer RH Jr, Fielding LP, Miner WK, Markoll R (1993) A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis. J Rheumatol 20:456–460

    PubMed  CAS  Google Scholar 

  12. 12.

    Pilla AA, Martin DE, Schuett AM et al (1996) Effect of pulsed radiofrequency therapy on edema from grades I and II ankle sprains: a placebo controlled, randomized, multi-site, double-blind clinical study. J Athl Train S31:53

    Google Scholar 

  13. 13.

    Pennington GM, Danley DL, Sumko MH, Bucknell A, Nelson JH (1993) Pulsed, non-thermal, high frequency electromagnetic energy (Diapulse) in the treatment of grade I and grade II ankle sprains. Mil Med 158:101–104

    PubMed  CAS  Google Scholar 

  14. 14.

    Foley-Nolan D, Barry C, Coughlan RJ, O’Connor P, Roden D (1990) Pulsed high frequency (27 MHz) electromagnetic therapy for persistent neck pain: a double blind placebo-controlled study of 20 patients. Orthopedics 13:445–451

    PubMed  CAS  Google Scholar 

  15. 15.

    Foley-Nolan D, Moore K, Codd M, eBarry C, O’Connor P, Coughlan RJ (1992) Low energy high frequency pulsed electromagnetic therapy for acute whiplash injuries: a double blind randomized controlled study. Scan J Rehab Med 24:51–59

    CAS  Google Scholar 

  16. 16.

    Pilla AA, Muehsam DJ, Markov MS, Sisken BS (1999) EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. Bioelectrochem Bioenergetics 48:27–34

    Article  CAS  Google Scholar 

  17. 17.

    Pilla AA (2006) Mechanisms and therapeutic applications of time varying and static magnetic fields. In: Barnes F, Greenebaum B (eds) Biological and medical aspects of electromagnetic fields. CRC, Boca Raton, FL, pp 351–411

    Google Scholar 

  18. 18.

    Wyatt AW, Steinert JR, Mann GE (2004) Modulation of the L-arginine/nitric oxide signalling pathway in vascular endothelial cells. Biochem Soc Symp 71:143–156

    PubMed  CAS  Google Scholar 

  19. 19.

    Romero-Sandoval EA, Curros-Criado MM, Gaitan G, Molina C, Herrero JF (2007) Nitroparacetamol (NCX-701) and pain: first in a series of novel analgesics. CNS Drug Rev 13:279–295

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Michael Hill C, Sindet-Pederson S, Seymour RA, Hawkesford JE II, Coulthard P, Lamey PJ, Gerry Cowan C, Wickens M, Jeppsson L, Dean AD, Svensson O (2006) Analgesic efficacy of the cyclooxygenase-inhibiting nitric oxide donor AZD3582 in postoperative dental pain: comparison with naproxen and rofecoxib in two randomized, double-blind, placebo-controlled studies. Clin Ther 28:1279–1295

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    McLeod BR, Pilla AA, Sampsel MW (1983) Electromagnetic fields induced by Helmholtz aiding coils inside saline-filled boundaries. Bioelectromagnetics 4:357–370

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Pilla AA, Sechaud P, McLeod BR (1983) Electrochemical and electrical aspects of low frequency electromagnetic current induction in biological systems. J Biol Phys 11:51–58

    Article  CAS  Google Scholar 

  23. 23.

    Coll AM, Ameen JRM, Mead D (2004) Postoperative pain assessment tools in day surgery: literature review. J Adv Nurs 46:124–133

    Article  Google Scholar 

  24. 24.

    DiMarco P, Grippaudo FR, Della Rocca G, De Vita R (2001) Role of pre-emptive analgesia in reduction mammaplasty. Scand J Plast Reconstr Hand Surg 35:297–300

    Article  CAS  Google Scholar 

  25. 25.

    Aaron RK, Boyan BD, Ciombor D, Schwartz Z, Simon BJ (2004) Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop 419:30–37

    PubMed  Article  Google Scholar 

  26. 26.

    Roland D, Ferder M, Kothuru R, Faierman T, Strauch B (2000) Effects of pulsed magnetic energy on a microsurgically transferred vessel. Plast Reconstr Surg 105:1371–1374

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Weber RV, Navarro A, Wu JK, Yu HL, Strauch B (2004) Pulsed magnetic fields applied to a transferred arterial loop support the rat groin composite flap. Plast Reconstr Surg 114:1185–1189

    PubMed  Article  Google Scholar 

  28. 28.

    Nindl G, Swezb JA, Millera JM, Balcavage WX (1997) Growth stage dependent effects of electromagnetic fields on DNA synthesis of Jurkat cells. FEBS Lett 414:501–506

    Article  CAS  Google Scholar 

  29. 29.

    Strauch B, Patel MK, Navarro A, Berdischevsky M, Pilla AA (2007) Pulsed magnetic fields accelerate wound repair in a cutaneous wound model in the rat. Plast Reconstr Surg 120:425–430

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Strauch B, Patel MK, Rosen DJ, Mahadevia S, Brindzei N, Pilla AA (2006) Pulsed magnetic field therapy increases tensile strength in a rat Achilles’ tendon repair model. J Hand Surg [Am] 31:1131–1135

    Article  Google Scholar 

  31. 31.

    Markov MS, Pilla AA (1997) Weak static magnetic field modulation of myosin phosphyorylation in a cell-free preparation: calcium dependence. Bioelectrochem Bioenergetics 43:235–240

    Google Scholar 

  32. 32.

    Markov MS, Muehsam DJ, Pilla AA (1994) Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields. In: Allen MJ, Cleary SF, Sowers AE (eds) Charge and Field Effects in Biosystems 4. World Scientific, Hackensack, NJ, pp 274–288

    Google Scholar 

  33. 33.

    Miura M, Takayama K, Okada J (1993) Increase in nitric oxide and cyclic GMP of rat cerebellum by radio frequency burst-type electromagnetic field radiation. J Physiol 461:513–524

    PubMed  CAS  Google Scholar 

  34. 34.

    Diniz P, Soejima K, Ito G (2002) Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7:18–23

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Schnoke M, Midura RJ (2007) Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res 25:933–940

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Fitzsimmons RJ, Gordon SL, Kronberg J, Ganey T, Pilla AA (2007) A Pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling. J Orthop Res

  37. 37.

    Morimoto S, Takahashi T, Shimizu K, Kanda T, Okaishi K, Okuro M, Murai H, Nishimura Y, Nomura K, Tsuchiya H, Ohashi I, Matsumoto M (2005) Electromagnetic fields inhibit endothelin-1 production stimulated by thrombin in endothelial cells. J Int Med Res 33:545–554

    PubMed  CAS  Google Scholar 

  38. 38.

    Jeong JH, Kum C, Choi HJ, Park ES, Sohn UD (2006) Extremely low frequency magnetic field induces hyperalgesia in mice modulated by nitric oxide synthesis. Life Sci 78:1407–1412

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Cárdenas-Camarena L, Paillet JC, Briseño R (2005) Electrostimulation: uses and applications for periprosthetic capsular contracture: experimental model. Aesthetic Plast Surg 29:410–414

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Anneli Gustavsson Jonsson for her invaluable clinical help and Ivivi Technologies, Inc., Montvale, NJ for the generous donation of the PEMF units used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Per Hedén.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hedén, P., Pilla, A.A. Effects of Pulsed Electromagnetic Fields on Postoperative Pain: A Double-Blind Randomized Pilot Study in Breast Augmentation Patients. Aesth Plast Surg 32, 660 (2008). https://doi.org/10.1007/s00266-008-9169-z

Download citation

Keywords

  • Breast augmentation
  • Pulsed electromagnetic field therapy
  • Pain reduction