Skip to main content
Log in

Individual and collective cognition in social insects: what’s in a name?

  • Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

A Correction to this article was published on 19 January 2024

This article has been updated

Abstract

Descriptions of types of intelligence or cognition that conceptualize and categorize behavioral capabilities of workers and cooperative groups of eusocial insects have proliferated. Individual workers are described as having cognition, or less frequently, intelligence, and emergent colony-level behavior is typically described as collective intelligence, swarm intelligence, and distributed intelligence (or cognition). These concepts and terms have historical roots in psychology, education, economics, politics, computer science, artificial intelligence, and robotics, and have varied connotations and denotations that often are inconsistent with their initial context of use. Although integration and hybridization among disciplines can be productive, imprecise and potentially misleading applications may limit the ability to accurately describe or conceptualize social insect behavioral phenomena, generate testable hypotheses, and communicate accurately and broadly within the scientific community and with the media and public. Here, we aim to clarify the origins, meanings, and relevance of terms associated with social insect intelligence and cognition. An historical, semantic, and mechanistic analysis suggests that terms may lack relevant conceptual significance and should be carefully evaluated before applying them free-hand to attempt to inform our understanding of social insect cognition at multiple levels. We provide rationale and recommendations for retaining or discontinuing the use of terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable

Change history

References

  • Abramson CI, Wells H (2018) An inconvenient truth: some neglected issues in invertebrate learning. Perspect Behav Sci 41:395–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Almaatouq A, Noriega-Campero A, Alotaibi A, Krafft PM, Moussaid M, Pentland A (2020) Adaptive social networks promote the wisdom of crowds. P Natl Acad Sci USA 117:11379–11386

    Article  CAS  Google Scholar 

  • Amon MJ, Favela LH (2019) Distributed cognition criteria: defined, operationalized, and applied to human-dog systems. Behav Process 162:167–176

    Article  Google Scholar 

  • Avarguès-Weber A, d’Amaro D, Metzler M, Finke V, Baracchi D, Dyer AG (2018) Does holistic processing require a large brain? Insights from honeybees and wasps in fine visual recognition tasks. Front Psychol 9:1313

    Article  PubMed  PubMed Central  Google Scholar 

  • Avarguès-Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Article  PubMed  Google Scholar 

  • Avarguès-Weber A, Giurfa M (2013) Conceptual learning by miniature brains. Proc R Soc B 280:20131907

    Article  PubMed  PubMed Central  Google Scholar 

  • Baracchi D, Baciadonna L (2020) Insect sentience and the rise of a new inclusive ethics. Anim Sentience 5:18

    Article  Google Scholar 

  • Baracchi D, Lihoreau M, Giurfa M (2017) Do insects have emotions? Some insights from bumblebees. Front Behav Neurosci 11:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Barron AB, Hebets EA, Cleland TA, Fitzpatrick CL, Hauber ME, Stevens JR (2015) Embracing multiple definitions of learning. Trends Neurosci 38:405–407

    Article  CAS  PubMed  Google Scholar 

  • Barron AB, Klein C (2016) What insects can tell us about the origins of consciousness. P Natl Acad Sci USA 113:4900–4908

    Article  CAS  Google Scholar 

  • Bayne T, Brainard D, Byrne RW et al (2019) What is cognition? Curr Biol 29:R608–R615

    Article  Google Scholar 

  • Bechtel W, Bich L (2021) Grounding cognition: heterarchical control mechanisms in biology. Phil Trans R Soc B 376:20190751

    Article  PubMed  PubMed Central  Google Scholar 

  • Beekman M, Jordan LA (2017) Does the field of animal personality provide any new insights for behavioral ecology? Behav Ecol 28:617–623

    Article  Google Scholar 

  • Bell AM (2017) Commentary on Beekman and Jordan: there is no special sauce. Behav Ecol 28:626–627

    Article  Google Scholar 

  • Beni G, Wang J (1989) Swarm intelligence. In: Proceedings Seventh Annual Meeting of the Robotics Society of Japan. RSJ Press, Tokyo, pp 425–428 (In Japanese)

    Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  CAS  PubMed  Google Scholar 

  • Bestea L, Briard E, Carcaud J, Sandoz JC, Velarde R, Giurfa M, De Brito Sanchez MG (2022) The short neuropeptide F (sNPF) promotes the formation of appetitive visual memories in honey bees. Biol Lett 18:20210520

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: From Natural to Artificial systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bonabeau E, Theraulaz G, Deneubourg J-L, Aron S, Camazine S (1997) Self-organization in social insects. Trends Ecol Evol 12:188–193

    Article  CAS  PubMed  Google Scholar 

  • Bortot M, Agrillo C, Avarguès-Weber A, Bisazza A, Miletto Petrazzini ME, Giurfa M (2019) Honeybees use absolute rather than relative numerosity in number discrimination. Biol Lett 15:20190138

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkart JM, Schubiger MN, van Schaik CP (2017) The evolution of general intelligence. Behav Brain Sci 40:e195

    Article  PubMed  Google Scholar 

  • Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Caron S, Abbott LF (2017) Neuroscience: intelligence in the honeybee mushroom body. Curr Biol 27:R220–R223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Check E (2006) From hive minds to humans. Nature 443:893

    Article  CAS  PubMed  Google Scholar 

  • Cheng K (2018a) Cognition beyond representation: varieties of situated cognition in animals. Comp Cogn Behav Rev 13:1–20

    Article  CAS  Google Scholar 

  • Cheng K (2018b) More situated cognition in animals: reply to commentators. Comp Cogn Behav Rev 13:49–54

    Article  Google Scholar 

  • Chittka L (2022) The mind of a bee. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Rossi N (2022) Social cognition in insects. Trends Cogn Sci 26:578–592

    Article  PubMed  Google Scholar 

  • Condorcet M (1785) Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. L’impremerie Royale, Paris

    Google Scholar 

  • Couzin ID (2009) Collective cognition in animal groups. Trends Cogn Sci 13:36–43

    Article  PubMed  Google Scholar 

  • Czaczkes TJ (2022) Advanced cognition in ants. Myrm News 32:51–64

    Google Scholar 

  • Deary IJ (2012) Intelligence. Annu Rev Psychol 63:453–482

    Article  PubMed  Google Scholar 

  • Denker M, Finke R, Schaupp F, Grün S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31:119–133

    Article  Google Scholar 

  • DeSilva JM, Traniello JFA, Claxton A, Fannin LD (2021) When and why did human brains decrease in size? A new change-point analysis and insights from brain evolution in ants. Front Ecol Evol 9:742639

    Article  Google Scholar 

  • Devaud J-M, Papouin T, Carcaud J, Sandoz J-C, Grünewald B, Giurfa M (2015) Neural substrate for higher-order learning in an insect: mushroom bodies are necessary for configural discriminations. P Natl Acad Sci USA 112:E5854–E5862

    Article  CAS  Google Scholar 

  • Dickinson RV (1971) Distributed intelligence in terminal systems. Computer 4:17

    Article  Google Scholar 

  • Dona HSG, Solvi C, Kowalewska A, Mäkelä K, MaBouDi H, Chittka L (2022) Do bumble bees play? Anim Behav 194:239–251

    Article  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190

    Article  Google Scholar 

  • Dunbar RIM, Gamble C, Gowlett J (2010) Social brain, distributed mind. Oxford University Press, Oxford

    Book  Google Scholar 

  • Elgar MA, Jones TM, McNamara KB (2013) Promiscuous words. Front Zool 10:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Farris SM (2016) Insect societies and the social brain. Curr Opin Insect Sci 15:1–8

    Article  PubMed  Google Scholar 

  • Farris SM, Schulmeister S (2011) Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc R Soc Lond B 278:940–951

    Google Scholar 

  • Favela LH, Martin J (2017) “Cognition” and dynamical cognitive science. Minds Mach 27:331–355

    Article  Google Scholar 

  • Favela LH (2020) Cognitive science as complexity science. WIREs Cogn Sci 11:e1525

    Article  Google Scholar 

  • Feinerman O, Korman A (2017) Individual versus collective cognition in social insects. J Exp Biol 220:73–82

    Article  PubMed  Google Scholar 

  • Franks NR (1989) Army ants: a collective intelligence. Am Sci 77:139–145

    Google Scholar 

  • Franks NR, Richardson T (2006) Teaching in tandem-running ants. Nature 439:153–153

    Article  CAS  PubMed  Google Scholar 

  • Galton F (1907) Vox populi. Nature 75:450–451

    Article  Google Scholar 

  • Gamble C, Gowlett J, Dunbar R (2014) Thinking big: How the evolution of social life shaped the Human mind. Thames and Hudson, London

    Google Scholar 

  • Gelblum A, Fonio E, Rodeh Y, Korman A, Feinerman O (2020) Ant collective cognition allows for efficient navigation through disordered obstacles. eLife Sci 9:e5519

    Google Scholar 

  • Geng H, Lafon G, Avarguès-Weber A, Buatois A, Massou I, Giurfa M (2022) Visual learning in a virtual reality environment upregulates immediate early gene expression in the mushroom bodies of honey bees. Commun Biol 5:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson CB (2001) From knowledge accumulation to accommodation: cycles of collective cognition in work groups. J Organ Behav 22:121–134

    Article  Google Scholar 

  • Ginsburg S, Jablonka E (2021) Evolutionary transitions in learning and cognition. Phil Trans R Soc B376:20190766

    Article  Google Scholar 

  • Gintis H (2014) Sociobiology: the distributed brain. Nature 509:284–285

    Article  CAS  Google Scholar 

  • Giurfa M (2019) An insect’s sense of number. Trends Cogn Sci 23:720–722

    Article  PubMed  Google Scholar 

  • Godfrey RK, Gronenberg W (2019) Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A 205:13–32

    Article  Google Scholar 

  • Gordon DM (2019) The ecology of collective behavior in ants. Annu Rev Entomol 64:35–50

    Article  CAS  PubMed  Google Scholar 

  • Gowaty PA (1982) Sexual terms in sociobiology: emotionally evocative and, paradoxically, jargon. Anim Behav 30:630–631

    Article  Google Scholar 

  • Gowaty PA (1984) Cuckoldry: the limited scientific usefulness of a colloquial term. Anim Behav 32:924–925

    Article  Google Scholar 

  • Gronenberg W, Riveros AJ (2009) Social brains and behavior - past and present. In: Gadau J, Fewell JH (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, MA, pp 377–401

    Google Scholar 

  • Hays B (2020) Brain power in numbers: ants use collective cognition to navigate obstacles. https://www.upi.com/Science_News/2020/05/12/Brain-power-in-numbers-Ants-use-collective-cognition-to-navigate-obstacles/4261589313068/?sl=1 Accessed 16 Oct 2023

  • Hendtlass T (2004) An introduction to collective intelligence. In: Fulcher J, Jain LC (eds) Applied Intelligent Systems. Studies in Fuzziness and Soft Computing 153. Springer, Berlin, pp 133–178

    Google Scholar 

  • Heyde A, Guo L, Jost C, Theraulaz G, Mahadevan L (2021) Self-organized biotectonics of termite nests. P Natl Acad Sci USA 118:e20069851

    Article  Google Scholar 

  • Hiltz SR, Turoff M (1978) The network nation: human communication via Computer. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hingston RWG (1929) Instinct and intelligence. Macmillan Publishing, NY

    Google Scholar 

  • Hölldobler BK, Wilson EO (1990) The ants. Harvard University Press, Cambridge MA

    Book  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2018) Numerical ordering of zero in honey bees. Science 360:1124–1126

    Article  CAS  PubMed  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2019a) Symbolic representation of numerosity by honeybees (Apis mellifera): matching characters to small quantities. Proc R Soc B 286:20190238

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG (2019b) Numerical cognition in honeybees enables addition and subtraction. Sci Adv 5:eaav0961

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchins E (1991) The social organization of distributed cognition. In: Resnick LB, Levine JM, Teasley SD (eds) Perspectives on Socially Shared Cognition. American Psychological Association, Washington, pp 283–307

    Chapter  Google Scholar 

  • Hutchins E (1995) How a cockpit remembers its flight speeds. Cogn Sci 19:265–288

    Article  Google Scholar 

  • Hutchins E (2010) Cognitive ecology. Top Cogn Sci 2:705–715

    Google Scholar 

  • Jaffe K, Perez E (1989) Comparative study of brain morphology in ants. Brain Behav Evol 33:25–33

    Article  CAS  PubMed  Google Scholar 

  • Kamhi JF, Gronenberg WG, Robson SKA, Traniello JFA (2016) Social complexity influences brain investment and neural operation costs in ants. Proc R Soc B 283:20161949

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Theraulaz G (2016) Dynamical models of task organization in social insect colonies. Bull Math Biol 78:879–915

    Article  PubMed  Google Scholar 

  • Krause J, Ruxton GD, Krause S (2010) Swarm intelligence in animals and humans. Trends Ecol Evol 25:28–34

    Article  PubMed  Google Scholar 

  • Kuebler LS, Kelber C, Kleineidam CJ (2010) Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri). J Comp Neurol 518:352–365

  • Legg S, Hutter M (2007) A collection of definitions of intelligence. Fr Art Int 157:17

    Google Scholar 

  • Lestel D (1993) Pensé-fourmi, raison pratique et cognition distribuée: le raisonnement complexe comme fait cognitif total. In: Information sur les sciences sociales. SAGE Publishing, London, pp 605–642

    Google Scholar 

  • Levin M, Keijzer F, Lyon P, Arendt D (2021) Uncovering cognitive similarities and differences, conservation and innovation. Phil Trans R Soc B 376:20200458

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy P (1997) Collective intelligence: mankind’s emerging world in cyberspace. Plenum Press, NY

    Google Scholar 

  • Li L, Su S, Perry CJ et al (2018) Large-scale transcriptome changes in the process of long-term visual memory formation in the bumblebee, Bombus terrestris. Sci Rep 8:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Lihoreau M, Dubois T, Gomez-Moracho T, Kraus S, Monchanin C, Pasquaretta C (2019) Putting the ecology back into insect cognition research. Adv Insect Physiol 57:1–25

    Article  Google Scholar 

  • Lihoreau M, Latty T, Chittka L (2012) An exploration of the social brain hypothesis in insects. Front Physiol 3:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan CJ, Avin S, Boogert N et al (2018) Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp Cogn Behav Rev 13:55–89

    Article  Google Scholar 

  • Loukola OJ, Perry CJ, Coscos L, Chittka L (2017) Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355:833–836

    Article  CAS  PubMed  Google Scholar 

  • Malone TW, Bernstein MS (2022) Handbook of collective intelligence. MIT Press, Cambridge, MA

    Google Scholar 

  • Marshall JAR, Bogacz R, Dornhaus A, Planqué R, Kovacs T, Franks NR (2009) On optimal decision-making in brains and social insect colonies. J R Soc Interface 6:1065–1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall JAR, Franks NR (2009) Colony-level cognition. Curr Biol 19:R395–R396

    Article  CAS  PubMed  Google Scholar 

  • Michaelian K, Sutton J (2013) Distributed cognition and memory research: history and current directions. Rev Philos Psychol 4:1–13

    Article  Google Scholar 

  • Moore JL, Rocklin TR (1998) The distribution of distributed cognition: multiple interpretations and uses. Educ Psychol Rev 10:97–113

    Article  Google Scholar 

  • Muller P (1970) Tests collectifs d’intelligence et selection scolaire: l’expérience neuchâteloise avec douz ans de recul. Rev Suisse Psychol 29:194–202

    Google Scholar 

  • Muratore IB, Fandozzi EM, Traniello JFA (2022) Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes. J Comp Physiol A 208:325–344

    Article  CAS  Google Scholar 

  • Muratore IB, Ilieş I, Huzar AK, Zaidi FH, Traniello JFA (2023b) Morphological evolution and the behavioral organization of division of labor in a socially complex agricultural ant. Behav Ecol Sociobiol 77:70

    Article  Google Scholar 

  • Muratore IB, Mullen SP, Traniello JFA (2023a) Transcriptomic analysis of mosaic brain evolution underlying complex division of labor in a social insect. J Comp Neurol 531:853–865

    Article  PubMed  Google Scholar 

  • Muratore IB, Traniello JFA (2020) Fungus-growing ants: models for the integrative analysis of cognition and brain evolution. Front Behav Neurosci 14:599234

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscedere ML, Traniello JFA (2012) Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste-and age-related patterns of worker brain organization. PLoS One 7:e31618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nash W (1993) Jargon: its uses and abuses. Blackwell, Cambridge, MA

    Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in non-equilibrium systems. Wiley, New York

    Google Scholar 

  • O’Donnell S, Bulova SJ, DeLeon P, Khodak S, Miller S, Sulger E (2015) Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae). Proc R Soc B 282:20150791

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagán OR (2019) The brain: a concept in flux. Phil Trans R Soc B 374:20180383

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker LE (2008) Distributed intelligence: overview of the field and its application in multi-robot systems. J Phys Agents 2:5–14

    Google Scholar 

  • Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, Reinberg D, Liebig J (2021) Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant (Harpegnathos saltator). Proc R Soc B 288:20210141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry CJ, Baciadonna L (2017) Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. J Exp Biol 220:3856–3868

    Article  PubMed  Google Scholar 

  • Perry CJ, Barron AB (2013) Honey bees selectively avoid difficult choices. P Natl Acad Sci USA 110:19155–19159

    Article  CAS  Google Scholar 

  • Perry CJ, Barron AB, Chittka L (2017) The frontiers of insect cognition. Curr Opin Behav Sci 16:111–118

    Article  Google Scholar 

  • Perry CJ, Chittka L (2019) How foresight might support the behavioral flexibility of arthropods. Curr Opin Neurobiol 54:171–177

    Article  CAS  PubMed  Google Scholar 

  • Riveros AJ, Seid MA, Wcislo WT (2012) Evolution of brain size in class-based societies of fungus-growing ants (Attini). Anim Behav 83:1043–1049

    Article  Google Scholar 

  • Rowe C, Healy SD (2014) Measuring variation in cognition. Behav Ecol 25:1287–1292

    Article  Google Scholar 

  • Sadiku MNO, Tembely M, Musa SM (2018) Swarm Intelligence: A Primer. Int J Adv Res Comput Sci Softw Eng 8:100–102

    Google Scholar 

  • Sasaki T, Pratt SC (2018) The psychology of superorganisms: collective decision making by insect societies. Annu Rev Entomol 63:259–275

    Article  CAS  PubMed  Google Scholar 

  • Seeley TD (2010) Honey Bee Democracy. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Simons M, Tibbetts E (2019) Insects as models for studying the evolution of animal cognition. Curr Opin Insect Sci 34:117–122

    Article  PubMed  Google Scholar 

  • Sumpter DJT (2006) The principles of collective animal behavior. Phil Trans R Soc B 361:5–22

    CAS  Google Scholar 

  • Surowiecki J (2004) The wisdom of crowds. Little, Brown, London

    Google Scholar 

  • Szuba T (2001) A formal definition of the phenomenon of collective intelligence and its IQ measure. Future Gener Comp Sy 17:489–500

    Article  Google Scholar 

  • Theiner G (2017) Groups as distributed cognitive systems. In: Jankovic M, Ludwig K (eds) The Routledge handbook of collective intentionality. Routledge, New York, NY, pp 233–248

    Chapter  Google Scholar 

  • Theiner G (2018) Collaboration, exploitation, and distributed animal cognition. Comp Cogn Behav Rev 13:41–48

    Article  Google Scholar 

  • Traniello JFA, Linksvayer TA, Coto ZN (2022) Social complexity and brain evolution: insights from ant neuroarchitecture and genomics. Curr Opin Insect Sci 53:100962

    Article  PubMed  Google Scholar 

  • Wechsler D (1971) Concept of collective intelligence. Am Psychol 26:904–907

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol 20:415–432

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Woolley AW, Chabris CF, Pentland A, Hashmi N, Malone TW (2010) Evidence for a collective intelligence factor in the performance of human groups. Science 330:686–688

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Chai C, Liu Y (2017) Collective intelligence: from the enlightenment to the crowd science. In: Proceedings of 2nd International Conference on Crowd Science and Engineering, July 6–9, 2017, Beijing, China (ICCSE'17). https://doi.org/10.1145/3126973.3126993

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Drs. Martin Giurfa, Klaus Jaffe, Dominique Lestel, and two anonymous reviewers for insightful comments and Zach Coto, E. Jordan Smith, and Frank Azorsa for review of the manuscript. We are grateful to Drs. Scarlett Howard, Simon Robson, Lida Loukola, and Gillian Ashworth for permission to use their photographs.

Code availability

Not applicable

Funding

This work was funded by National Science Foundation grant IOS 1953393 to JFAT

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F.A. Traniello.

Ethics declarations

Competing interests

The first author is Editor-in-Chief for Behavioral Ecology and Sociobiology and was recused from the review process.

Additional information

This article is a contribution to the Topical Collection “Toward a Cognitive Ecology of Invertebrates” - Guest Editors: Aurore Avarguès-Weber and Mathieu Lihoreau

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article was originally published with still needed corrections in the references section.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traniello, J.F., Avarguès-Weber, A. Individual and collective cognition in social insects: what’s in a name?. Behav Ecol Sociobiol 77, 119 (2023). https://doi.org/10.1007/s00265-023-03392-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-023-03392-w

Keywords

Navigation